BackgroundRecent studies show that epithelial–mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) contribute to the progression and poor prognosis of carcinoma through multiple mechanisms. Both inflammation and changing of epithelium have a close relationship with tumorigenesis of gastric cancer. However, the relevance between EMT and TAMs is still unclear in gastric cancer and needs more scientific research. This study is designed to explore the relationship between EMT and TAMs in gastric cancer.Materials and methodsImmunohistochemistry was used to detect the expression of EMT-related proteins and TAM markers in cancer tissues and normal gastric tissues.ResultsHigh levels of EMT and TAMs infiltration are related to aggressive features and independent prognostic factors in gastric cancer, respectively. In addition, expression of the two indicators is associated with expression of transforming growth factor-β1 (TGF-β1). Infiltration of TAMs is also associated with EMT-related marker in gastric cancer.ConclusionOur results suggest that high levels of EMT and TAMs infiltration are related to aggressive features and independent prognostic factors in gastric cancer, respectively. A correlation was found between EMT- and TAM-related indicators, which may be associated with TGF-β signaling pathway. The level of TAMs infiltration plays an important role in gastric cancer, the markers of which can be used as prognostic indicators.
The molecular mechanism of the interaction between pepsin and two typical ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and 1-octyl-3-methylimidazolium chloride ([C8mim]Cl), was investigated with fluorescence spectroscopy, ultraviolet absorption, and circular dichroism spectroscopy at a pH value of 1.6. The results suggest that ILs could quench the intrinsic fluorescence of pepsin, probably via a dynamic quenching mechanism. The fluorescence quenching constants were determined by employing the classic Stern-Volmer equation. The constant values are very small, indicating that only a very weak interaction between ILs and pepsin exists. The Gibbs free-energy change, enthalpy change (ΔH), and entropy change (ΔS) during the interaction of pepsin and ILs were estimated. Positive values of ΔH and ΔS indicate that the interaction between ILs and pepsin is mainly driven by hydrophobic interaction. Synchronous and three-dimensional fluorescence spectra demonstrate that the addition of ILs (0-0.20 mol L(-1) for each IL) does not bring apparent changes to the microenvironments of tyrosine and tryptophan residues. Activity experiments show that the activity of pepsin is concentration dependent; higher concentrations of ILs (>0.22 mol L(-1) for [C8mim]Cl and >0.30 mol L(-1) for [C4mim]Cl) cause the remarkable reduction of enzyme activity. The presence of ILs also does not improve the thermal stability of pepsin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.