LncRNAs are emerging potential key players in gene expression regulation. Analysis of RNA-seq data from human pre-implantation embryos identified lncRNA signatures that are specific to this critical step. We anticipate that further studies will show that these new transcripts are major regulators of embryo development. These findings might also be used to develop new tests/treatments for improving the pregnancy success rate in IVF procedures or for regenerative medicine applications involving PSC.
Human induced pluripotent stem cells (hiPSCs) have the potential to differentiate virtually into any cell type in unlimited quantities. Therefore, they are ideal for in vitro tissue modeling or to produce cells for clinical use. Importantly, and differently from immortalized and cancer cell lines, the hiPSC genome scrupulously reproduces that of the cell from which they were derived. However, hiPSCs can develop genetic abnormalities during reprogramming or prolonged cell culture, such as aneuploidies or oncogenic mutations (e.g., in TP53). Therefore, hiPSC genome integrity must be routinely monitored because serious genome alterations would greatly compromise their usefulness or safety of use. Here, we reviewed hiPSC genome quality control monitoring methods and laboratory practice. Indeed, due to their frequency and functional consequences, recurrent genetic defects found in cultured hiPSCs are inacceptable and their appearance should be monitored by routine screening. Hence, for research purposes, we propose that the genome of hiPSC lines should be systematically screened at derivation, at least by karyotyping, and then regularly (every 12 weeks) during experiments, for instance with polymerase chain reaction-based techniques. For some specific applications, such as research on aging, cell cycle, apoptosis or cancer, other tests (e.g., TP53 mutation detection) should also be included. For clinical use, in addition to karyotyping, we advise exome sequencing. STEM CELLS 2018; 00:000-000 SIGNIFICANCE STATEMENTThe landscape of genomic abnormalities found in human induced pluripotent stem cells has been extensively described. The present Review discusses how to classify these abnormalities, the tools for their detection, and the quality metrics that could be used for decision-making, both for research and clinical applications. This study also suggests some simple recommendations for the minimum genome integrity checks that are needed when working with pluripotent stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.