Epileptic seizures are frequent in patients with glioblastoma, and anticonvulsive treatment is often necessary. While clinical guidelines recommend all approved anticonvulsants, so far it is still unclear which of the available drugs is the best therapeutic option for treating glioma-associated seizures, also in view of possible anti-tumorigenic effects. In our study, we employed four patient-derived low-passage cell lines of glioblastoma and three cell lines of brain metastases, and challenged these cultures with four anticonvulsants with different mechanisms of action: levetiracetam, valproic acid, carbamazepine and perampanel. Cell proliferation was determined by bromodeoxyuridine incorporation. To further analyze the effects of perampanel, apoptosis induction was measured by caspase 3/7 activation. Glutamate release was quantified and glucose uptake was determined using 18F-fluorodeoxyglucose. Real-time polymerase chain reaction was employed to assess the expression of genes associated with glutamate release and uptake in brain tumor cells. Of the four anticonvulsants, only perampanel showed systematic inhibitory effects on cell proliferation, whereas all other anticonvulsants failed to inhibit glioma and metastasis cell growth in vitro. Metastasis cells were much more resistant to perampanel than glioblastoma cell lines. Glucose uptake was attenuated in all glioblastoma cells after perampanel exposure, whereas cell death via apoptosis was not induced. Extracellular glutamate levels were found to be significantly higher in glioblastoma cell lines as compared to metastasis cell lines, but could be reduced by perampanel exposure. Incubation with perampanel up-regulated glutamine synthetase expression in glioblastoma cells, whereas treatment with valproic acid and levetiracetam downregulated excitatory amino acid transporter-2 expression. Overall, our data suggest that perampanel acts as an anticonvulsive drug and additionally mediated anti-tumorigenic effects.
The progression of glioblastomas is associated with a variety of neurological impairments, such as tumor-related epileptic seizures. Seizures are not only a common comorbidity of glioblastoma but often an initial clinical symptom of this cancer entity. Both, glioblastoma and tumor-associated epilepsy are closely linked to one another through several pathophysiological mechanisms, with the neurotransmitter glutamate playing a key role. Glutamate interacts with its ionotropic and metabotropic receptors to promote both tumor progression and excitotoxicity. In this review, based on its physiological functions, our current understanding of glutamate receptors and glutamatergic signaling will be discussed in detail. Furthermore, preclinical models to study glutamatergic interactions between glioma cells and the tumor-surrounding microenvironment will be presented. Finally, current studies addressing glutamate receptors in glioma and tumor-related epilepsy will be highlighted and future approaches to interfere with the glutamatergic network are discussed.
An abnormal glutamate signaling of glioblastoma may contribute to both tumor progression and the generation of glioma-associated epileptic seizures. We hypothesized that the AMPA receptor antagonist perampanel (PER) could attenuate tumor growth and epileptic events. F98 glioma cells, grown orthotopically in Fischer rats, were employed as a model of glioma to investigate the therapeutic efficiency of PER (15 mg/kg) as adjuvant to standard radiochemotherapy (RCT). The epileptiform phenotype was investigated by video-EEG analysis and field potential recordings. Effects on glioma progression were estimated by tumor size quantification, survival analysis and immunohistological staining. Our data revealed that orthotopically-growing F98 glioma promote an epileptiform phenotype in rats. RCT reduced the tumor size and prolonged the survival of the animals. The adjuvant administration of PER had no effect on tumor progression. The tumor-associated epileptic events were abolished by PER application or RCT respectively, to initial baseline levels. Remarkably, PER preserved the glutamatergic network activity on healthy peritumoral tissue in RCT-treated animals. F98 tumors are not only a robust model to investigate glioma progression, but also a viable model to simulate a glioma-associated epileptiform phenotype. Furthermore, our data indicate that PER acts as a potent anticonvulsant and may protect the tumor-surrounding tissue as adjuvant to RCT, but failed to attenuate tumor growth or promote animal survival.
Glioblastoma is the most common and aggressive primary brain tumor. Multiple genetic and epigenetic alterations in several major signaling pathways—including the phosphoinositide 3-kinases (PI3K)/AKT/mTOR and the Raf/MEK/ERK pathway—could be found. We therefore aimed to investigate the biological and molecular effects of small-molecule kinase inhibitors that may interfere with those pathways. For this purpose, patient-derived glioblastoma cells were challenged with dactolisib, ipatasertib, MK-2206, regorafenib, or trametinib. To determine the effects of the small-molecule kinase inhibitors, assays of cell proliferation and apoptosis and immunoblot analyses were performed. To further investigate the effects of ipatasertib on organotypic brain slices harboring glioblastoma cells, the tumor growth was estimated. In addition, the network activity in brain slices was assessed by electrophysiological field potential recordings. Multi-kinase inhibitor regorafenib and both MK-2206 and dactolisib were very effective in all preclinical tumor models, while with respect to trametinib, two cell lines were found to be highly resistant. Only in HROG05 cells, ipatasertib showed anti-tumoral effects in vitro and in organotypic brain slices. Additionally, ipatasertib diminished synchronous network activity in organotypic brain slices. Overall, our data suggest that ipatasertib was only effective in selected tumor models, while especially regorafenib and MK-2206 presented a uniform response pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.