[1] The generalized extreme value (GEV) distribution is a standard tool for modeling flood peaks, both in annual maximum series (AMS) and in partial duration series (PDS). In this paper, combined maximum likelihood estimation (MLE) and L moment (LMOM) procedures are developed for estimating location, shape, and scale parameters of the GEV distribution. Particular attention is given to estimation of the shape parameter, which determines the ''thickness'' of the upper tail of the flood frequency distribution. Mixed MLE-LMOM methods avoid problems with both MLE (estimator variance) and LMOM (estimator bias) estimators of the shape parameter. The mixed MLE-LMOM procedure is extended to use the two largest flood peaks in a year. This extension is developed in a PDS framework. Estimation procedures are applied to flood peak observations from 104 central Appalachian basins. The estimated values of the shape parameter for the central Appalachian basins are more negative than has been considered physically reasonable, independent of the estimation procedure that is used. Twenty-eight percent of mixed method estimators of the shape parameter have values less than À0.5, implying that the moments of order 2 and above are infinite. The estimated shape parameters for the central Appalachian basins do not depend on basin morphological parameters (such as drainage area) or land cover properties (such as percent urban, forest, or agricultural land use). Estimated values of the location and scale parameters for the central Appalachian watersheds correspond well with GEV-based simple scaling theory. Estimated values of the shape parameter for central Appalachian watersheds are shown to differ markedly from those of southern Appalachian watersheds and the difference is shown to be linked to contrasting properties of extreme floods. To conclude the paper, analyses of mixture distribution models are presented to address the question of whether flood peaks really have extreme ''heavy tail'' behavior or whether the GEV distribution is not the appropriate model for flood peaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.