Key Points
A phenotype with albinism, early-onset seizures, neurodevelopmental delay, infection susceptibility, and neutropenia is caused by AP3D1 mutations. AP3δ deficiency destabilizes the AP3 complex and defines a novel type of Hermansky-Pudlak syndrome with severe neurologic involvement.
Highlights d Assembly of native AMPARs occurs in discrete steps defined by ER-resident interactors d ABHD6 nurses GluA monomers; FRRS1l/CPT1c complexes drive multimer-formation of GluAs d FRRS1l is a potent regulator of synapse maturation and synaptic plasticity d FRRS1l knockout phenocopies the severe intellectual disability of human patients
Tyrosine kinase 2 (TYK2) associates with interferon (IFN) alpha receptor, IL-10 receptor (IL-10R) beta and other cytokine receptor subunits for signal transduction, in response to various cytokines, including type-I and type-III IFNs, IL-6, IL-10, IL-12 and IL-23. Data on TYK2 dependence on cytokine responses and in vivo consequences of TYK2 deficiency are inconsistent. We investigated a TYK2 deficient patient, presenting with eczema, skin abscesses, respiratory infections and IgE levels >1000 U/mL, without viral or mycobacterial infections and a corresponding cellular model to analyze the role of TYK2 in type-III IFN mediated responses and NK-cell function. We established a novel simple diagnostic monocyte assay to show that the mutation completely abolishes the IFN-α mediated antiviral response. It also partly reduces IL-10 but not IL-6 mediated signaling associated with reduced IL-10Rβ expression. However, we found almost normal type-III IFN signaling associated with minimal impairment of virus control in a TYK2 deficient human cell line. Contrary to observations in TYK2 deficient mice, NK-cell phenotype and function, including IL-12/IL-18 mediated responses, were normal in the patient. Thus, preserved type-III IFN responses and normal NK-cell function may contribute to antiviral protection in TYK2 deficiency leading to a surprisingly mild human phenotype.
Spatial relationships between Ca channels and release sensors at active zones (AZs) are a major determinant of synaptic fidelity. They are regulated developmentally, but the underlying molecular mechanisms are largely unclear. Here, we show that Munc13-3 regulates the density of Ca2.1 and Ca2.2 channels, alters the localization of Ca2.1, and is required for the development of tight, nanodomain coupling at parallel-fiber AZs. We combined EGTA application and Ca-channel pharmacology in electrophysiological and two-photon Ca imaging experiments with quantitative freeze-fracture immunoelectron microscopy and mathematical modeling. We found that a normally occurring developmental shift from release being dominated by Ca influx through Ca2.1 and Ca2.2 channels with domain overlap and loose coupling (microdomains) to a nanodomain Ca2.1 to sensor coupling is impaired in Munc13-3-deficient synapses. Thus, at AZs lacking Munc13-3, release remained triggered by Ca2.1 and Ca2.2 microdomains, suggesting a critical role of Munc13-3 in the formation of release sites with calcium channel nanodomains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.