Drug-resistant tuberculosis (TB) is a global crisis and a threat to health security. Since conventional drug susceptibility testing (DST) takes several weeks, we herein described a molecular assay to rapidly identify multidrug-resistant (MDR) and extensively drug-resistant (XDR) and reveal transmission associated-mutations of Mycobacterium tuberculosis complex (MTBC) isolates in 6 to 7 hours. An array was designed with 12 pairs of primers and 60 single nucleotide polymorphisms of 9 genes: rpoB, katG, inhA, ahpC, embB, rpsL, gyrA, rrs and eis. We assessed the performance of the array using 176 clinical MTBC isolates. The results of culture-based DST were used as the gold standard, the GenoType MTBDRplus and MTBDRsl tests were used for parallel comparison, and gene sequencing was performed to resolve the discordance. The sensitivities and specificities of the array are comparable to those of the MTBDRplus test for resistance to isoniazid (INH) (100.0%, 96.7%) and rifampicin (RIF) (99.4%, 96.7%) and of the MTBDRsl test for resistance to fluoroquinolones (FQs) (100%, 100%) and second-line injectable drugs (SLIDs) (98.3%, 100%). The sensitivities of the array for detecting resistance to ethambutol and streptomycin were 79.3% and 64.9%, respectively. The array has potential as a powerful tool for clinical diagnosis and epidemiological investigations.
Non-selenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx or GPx7) is an oxidative stress sensor that modulates the antioxidative activity of its target proteins through intermolecular disulfide bond formation. Given NPGPx's role in protecting cells from oxidative damage, identification of the oxidative stress-induced protein complexes, which forms with key stress factors, may offer novel insight into intracellular reactive oxygen species homeostasis. Here, we show that NPGPx forms a disulfide bond with the translational regulator cytoplasmic polyadenylation element-binding protein 2 (CPEB2) that results in negative regulation of hypoxia-inducible factor 1-alpha (HIF-1α) RNA translation. In NPGPx-proficient cells, high oxidative stress that disrupts this bonding compromises the association of CPEB2 with HIF-1α RNA, leading to elevated HIF-1α RNA translation. NPGPx-deficient cells, in contrast, demonstrate increased HIF-1α RNA translation under normoxia with both impaired induction of HIF-1α synthesis and blunted HIF-1α-programmed transcription following oxidative stress. Together, these results reveal a molecular mechanism for how NPGPx mediates CPEB2-controlled HIF-1α RNA translation in a redox-sensitive manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.