Research into the paraoxonase (PON) gene family has flourished over the past few years. In the 1970s and 1980s, only PON1 was known, and the investigations were conducted, essentially, by toxicologists focusing on protection against organophosphate poisoning. Since then, two new members of the family, PON2 and PON3, have been identified, both being shown to play antioxidant and anti-inflammatory roles. Evidence exists indicating that the PON family is central to a wide variety of human illnesses such as cardiovascular disease, diabetes mellitus, metabolic syndrome, obesity, non-alcoholic steatohepatitis, and several mental disorders. However, research is hampered considerably by the methods currently available to measure the activity of these enzymes. In this review, we summarize the state of knowledge on PON biochemistry and function, the influence of genetic variations, and the involvement of PON in several diseases. The problems associated with PON measurement, such as sample acquisition, lack of reference methods, and variety of substrates, will be presented. Also, we cover some of the present lines of research and propose some others for future progress in this field.
Paraoxonase-1 (PON1), an esterase/lactonase primarily associated with plasma high-density lipoprotein (HDL), was the first member of this family of enzymes to be characterized. Its name was derived from its ability to hydrolyze paraoxon, the toxic metabolite of the insecticide parathion. Related enzymes PON2 and PON3 were named from their evolutionary relationship with PON1. Mice with each PON gene knocked out were generated at UCLA and have been key for elucidating their roles in organophosphorus (OP) metabolism, cardiovascular disease, innate immunity, obesity, and cancer. PON1 status, determined with two-substrate analyses, reveals an individual’s functional Q192R genotype and activity levels. The three-dimensional structure for a chimeric PON1 has been useful for understanding the structural properties of PON1 and for engineering PON1 as a catalytic scavenger of OP compounds. All three PONs hydrolyze microbial N-acyl homoserine lactone quorum sensing factors, quenching Pseudomonas aeruginosa’s pathogenesis. All three PONs modulate oxidative stress and inflammation. PON2 is localized in the mitochondria and endoplasmic reticulum. PON2 has potent antioxidant properties and is found at 3- to 4-fold higher levels in females than males, providing increased protection against oxidative stress, as observed in primary cultures of neurons and astrocytes from female mice compared with male mice. The higher levels of PON2 in females may explain the lower frequency of neurological and cardiovascular diseases in females and the ability to identify males but not females with Parkinson’s disease using a special PON1 status assay. Less is known about PON3; however, recent experiments with PON3 knockout mice show them to be susceptible to obesity, gallstone formation and atherosclerosis. Like PONs 1 and 2, PON3 also appears to modulate oxidative stress. It is localized in the endoplasmic reticulum, mitochondria and on HDL. Both PON2 and PON3 are upregulated in cancer, favoring tumor progression through mitochondrial protection against oxidative stress and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.