The goal of this research is the development of tumor imaging and radiotherapeutic agents based on targeting of the integrin alpha(v)beta(3) (vitronectin receptor). Macrocyclic chelator DOTA has been conjugated to peptidomimetic vitronectin receptor antagonist SH066 to give TA138. TA138 and (89)Y-TA138 retain antagonist properties and high affinity for integrin alpha(v)beta(3) (IC(50) = 12 and 18 nM, respectively), and good selectivity versus integrin alpha(IIb)beta(3) (IC(50) > 10,000 nM). TA138 forms stable complexes with (111)In and (90)Y in > 95% RCP. (111)In-TA138 demonstrates high tumor uptake in the c-neu Oncomouse (Charles River Laboratories [Charles River, Canada]) mammary adenocarcinoma model (9.39% ID/g at 2 hours PI) and low background activity. Blood clearance is rapid and excretion is renal. Tumors are visible as early as 0.5 hours PI. Radiotherapy studies in the c-neu Oncomouse model demonstrated a slowing of tumor growth at a dose of 15 mCi/m(2), and a regression of tumors at a dose of 90 mCi/m(2).
The alpha-1 and alpha-2 [P(2)W(17)O(61)](10)(-) isomers, derivatives of the Wells-Dawson molecule, [alpha-P(2)W(18)O(62)](6)(-), may be useful ligands for stabilizing high-valent metal ions and lanthanides and actinides. However, the potential utility of the [alpha1-P(2)W(17)O(61)](10)(-) ligand has not been realized. Specifically, for the lanthanides, the stoichiometry, structure, and purity of the lanthanide complexes of the [alpha1-P(2)W(17)O(61)](10)(-) isomer are ambiguous. We have prepared lanthanide (Ln) complexes of the [alpha1-P(2)W(17)O(61)](10)(-) isomer in >/=98% isomeric purity, according to (31)P NMR data. (183)W NMR data clearly showed, for the first time, that the C(1) symmetry of the [alpha1-P(2)W(17)O(61)](10)(-) lanthanide complexes was maintained in solution. We determined the stoichiometry of the lanthanide complexes of the [alpha1-P(2)W(17)O(61)](10)(-) isomer in solution by two different methods: a complexometric titration method and excited state lifetime measurements and luminescence titrations for the europium(III) analogue. All experiments show a 1:1 Ln:[alpha1-P(2)W(17)O(61)](10)(-) ratio. The (31)P NMR data showed that the lanthanides with smaller ionic radii (higher charge-size ratio) form stable complexes, even surviving crystallization from hot water. On the other hand, the lanthanum analogues were not stable in solutions of high lithium content. The tetrabutylammonium salt of the [Lu(alpha1-P(2)W(17)O(61))](7)(-) complex showed >/=98% isomeric purity and the C(1) symmetry required for a derivative of [alpha1-P(2)W(17)O(61)](10)(-). Also the tetrabutylammonium cation stabilized the [Lu(alpha1-P(2)W(17)O(61))](7)(-) complex; a mixed tetrabutylammonium, lithium salt was stable in water for weeks according to (31)P NMR spectroscopy.
The alpha-1 and alpha-2 isomers of the monovacant Wells-Dawson heteropolyoxoanion [P(2)W(17)O(61)](10-) are complexants of trivalent rare-earth (RE) ions and serve to stabilize otherwise reactive tetravalent lanthanide (Ln) and actinide (An) ions in aqueous solution. Aspects of the bonding of Ln ions with alpha-1-[P(2)W(17)O(61)](10-) and alpha-2-[P(2)W(17)O(61)](10-) were investigated to address issues of complex formation and stability. We present structural insights about the Ln(III) coordination environment and hydration in two types of stoichiometric complexes, [Ln(alpha-1-P(2)W(17)O(61))](7-) and [Ln(alpha-2-X(2)W(17)O(61))(2)](17-) (for Ln identical with Sm, Eu, Lu; X identical with P, As). The crystal and molecular structures of [(H(2)O)(4)Lu(alpha-1-P(2)W(17)O(61))](7-) (1) and [Lu(alpha-2-P(2)W(17)O(61))(2)](17-) (2) were solved and refined through use of single-crystal X-ray diffraction. The crystallographic results are supported with corresponding insights from XAFS (X-ray absorption fine structure) for a series of nine solid-state complexes as well as from optical luminescence spectroscopy of the Eu(III) analogues in aqueous solution. All the Ln ions are eight-coordinate with oxygen atoms in a square antiprism arrangement. For the 1:1 stoichiometric Ln/alpha-1-[P(2)W(17)O(61)](10-) complexes, the Ln ions are bound to four O atoms of the lacunary polyoxometalate framework in addition to four O atoms from solvent (water) molecules as [(H(2)O)(4)Ln(alpha-1-P(2)W(17)O(61))](7-). This structure (1) is the first of its kind for any metal complex of alpha-1-[P(2)W(17)O(61)](10-), and the data indicate that the general stoichiometry [(H(2)O)(4)Ln(alpha-1-P(2)W(17)O(61))](7-) is maintained throughout the lanthanide series. For the 1:2 stoichiometric Ln/alpha-2-[X(2)W(17)O(61)](10-) complexes, no water molecules are in the Ln-O(8) coordination sphere. The Ln ions are bound to eight O atoms-four from each of two heteropolyanions-as [Ln(alpha-2-X(2)W(17)O(61))(2)](17-). The average Ln-O interatomic distances decrease across the lanthanide series, consistent with the decreasing Ln ionic radius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.