Phytoplankton is a key component of aquatic microbial communities, and metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon (DOC). Yet, the impact of primary production on bacterial activity and community composition remains largely unknown, as, for example, in the case of aerobic anoxygenic phototrophic (AAP) bacteria that utilize both phytoplankton-derived DOC and light as energy sources. Here, we studied how reduction of primary production in a natural freshwater community affects the bacterial community composition and its activity, focusing primarily on AAP bacteria. The bacterial respiration rate was the lowest when photosynthesis was reduced by direct inhibition of photosystem II and the highest in ambient light condition with no photosynthesis inhibition, suggesting that it was limited by carbon availability. However, bacterial assimilation rates of leucine and glucose were unaffected, indicating that increased bacterial growth efficiency (e.g., due to photoheterotrophy) can help to maintain overall bacterial production when low primary production limits DOC availability. Bacterial community composition was tightly linked to light intensity, mainly due to the increased relative abundance of light-dependent AAP bacteria. This notion shows that changes in bacterial community composition are not necessarily reflected by changes in bacterial production or growth and vice versa. Moreover, we demonstrated for the first time that light can directly affect bacterial community composition, a topic which has been neglected in studies of phytoplankton-bacteria interactions. IMPORTANCE Metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon in aquatic environments, and yet how changes in the rate of primary production affect the bacterial activity and community composition remains understudied. Here, we experimentally limited the rate of primary production either by lowering light intensity or by adding a photosynthesis inhibitor. The induced decrease had a greater influence on bacterial respiration than on bacterial production and growth rate, especially at an optimal light intensity. This suggests that changes in primary production drive bacterial activity, but the effect on carbon flow may be mitigated by increased bacterial growth efficiencies, especially of light-dependent AAP bacteria. Bacterial activities were independent of changes in bacterial community composition, which were driven by light availability and AAP bacteria. This direct effect of light on composition of bacterial communities has not been documented previously.
Algal-bacterial interactions include mutualism, commensalism, and predation. However, how multiple environmental conditions that regulate the strength and prevalence of a given interaction remains unclear. Here, we test the hypothesis that the prevailing algal-bacterial interaction shifted in two years (2005 versus 2015), due to increased temperature (T) and Saharan dust depositions in high-mountain lakes of Sierra Nevada (S Spain). Our results support the starting hypothesis that the nature of the prevailing algal-bacterial interaction shifted from a bacterivory control exerted by algae to commensalism, coinciding with a higher air and water T as well as the lower ratio sestonic nitrogen (N): phosphorous (P), related to greater aerosol inputs. Projected global change conditions in Mediterranean region could decline the functional diversity and alter the role of mixotrophy as a carbon (C) by-pass in the microbial food web, reducing the biomass-transfer efficiency up the web by increasing the number of trophic links.
Mixotrophy is a dominant metabolic strategy in ecosystems worldwide. Shifts in temperature (T) and light (i.e. the ultraviolet portion of spectrum (UVR)) are key abiotic factors that modulate the conditions under which an organism is able to live. However, whether the interaction between both drivers alters mixotrophy in a global-change context remains unassessed.To determine the T 9 UVR effects on relative electron transport rates, nonphotochemical quenching, bacterivory, and bacterial production, we conducted an experiment with Isochrysis galbana populations grown mixotrophically, which were exposed to 5°C of cooling and warming with respect to the control (19°C) with (or without) UVR over light-dark cycles and different timescales.At the beginning of the experiment, cooling inhibited the relative electron transport and bacterivory rates, whereas warming depressed only bacterivory regardless of the radiation treatment. By the end of the experiment, warming and UVR conditions stimulated bacterivory. These reduced relative electron transport rates (c. 50% (warming) and > 70% (cooling)) were offset by increased (35%) cumulative bacterivory rates under warming and UVR conditions.We propose that mixotrophy constitutes an energy-saving and a compensatory mechanism to gain carbon (C) when photosynthesis is impaired, and highlight the need to consider the natural environmental changes affecting the populations when we test the impacts of interacting global-change drivers.
The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.