The importance of mangrove forests in carbon sequestration and coastal protection has been widely acknowledged. Large-scale damage of these forests, caused by hurricanes or clear felling, can enhance vulnerability to erosion, subsidence and rapid carbon losses. However, it is unclear how small-scale logging might impact on mangrove functions and services. We experimentally investigated the impact of small-scale tree removal on surface elevation and carbon dynamics in a mangrove forest at Gazi bay, Kenya. The trees in five plots of a Rhizophora mucronata (Lam.) forest were first girdled and then cut. Another set of five plots at the same site served as controls. Treatment induced significant, rapid subsidence (−32.1±8.4 mm yr−1 compared with surface elevation changes of +4.2±1.4 mm yr−1 in controls). Subsidence in treated plots was likely due to collapse and decomposition of dying roots and sediment compaction as evidenced from increased sediment bulk density. Sediment effluxes of CO2 and CH4 increased significantly, especially their heterotrophic component, suggesting enhanced organic matter decomposition. Estimates of total excess fluxes from treated compared with control plots were 25.3±7.4 tCO2 ha−1 yr−1 (using surface carbon efflux) and 35.6±76.9 tCO2 ha−1 yr−1 (using surface elevation losses and sediment properties). Whilst such losses might not be permanent (provided cut areas recover), observed rapid subsidence and enhanced decomposition of soil sediment organic matter caused by small-scale harvesting offers important lessons for mangrove management. In particular mangrove managers need to carefully consider the trade-offs between extracting mangrove wood and losing other mangrove services, particularly shoreline stabilization, coastal protection and carbon storage.
Mangroves are intertidal ecosystems that are particularly vulnerable to climate change. At the low tidal limits of their range, they face swamping by rising sea levels; at the high tidal limits, they face increasing stress from desiccation and high salinity. Facilitation theory may help guide mangrove management and restoration in the face of these threats by suggesting how and when positive intra-and interspecific effects may occur: such effects are predicted in stressed environments such as the intertidal, but have yet to be shown among mangroves. Here, we report the results of a series of experiments at low and high tidal sites examining the effects of mangrove density and species mix on seedling survival and recruitment, and on the ability of mangroves to trap sediment and cause surface elevation change. Increasing density significantly increased the survival of seedlings of two different species at both high and low tidal sites, and enhanced sediment accretion and elevation at the low tidal site. Including Avicennia marina in species mixes enhanced total biomass at a degraded high tidal site. Increasing biomass led to changed microenvironments that allowed the recruitment and survival of different mangrove species, particularly Ceriops tagal.
Mangrove trees may allocate >50% of their biomass to roots. Dead roots often form peat, which can make mangroves significant carbon sinks and allow them to raise the soil surface and thus survive rising sea levels. Understanding mangrove root production and decomposition is hence of theoretical and applied importance. The current work explored the effects of species, site, and root size and root nutrients on decomposition. Decomposition of fine (3 mm diameter) and coarse (>3 mm diameter, up to a maximum of w9 mm) roots from three mangrove species, Avicennia marina, Bruguiera gymnorrhiza and Ceriops tagal was measured over 12 months at 6 sites along a tidal gradient in Gazi Bay, Kenya. C:N and P: N ratios in fresh and decomposed roots were measured, and the effects on decomposition of root size and age, of mixing roots from A. marina and C. tagal, of enriching B. gymnorrhiza roots with N and P and of artefacts caused by bagging roots were recorded. There were significant differences between species, with 76, 47 and 44 % mean dry weight lost after one year for A. marina, B. gymnorrhiza and C. tagal respectively, and between sites, with generally slower decomposition at dryer, high tidal areas. N enriched B. gymnorrhiza roots decomposed significantly faster than un-enriched controls; there was no effect of P enrichment. Mixing A. marina and C. tagal roots caused significantly enhanced decomposition in C. tagal. These results suggest that N availability was an important determinant of decomposition, since differences between species reflected the initial C: N ratios. The relatively slow decomposition rates recorded concur with other studies, and may overestimate natural rates, since larger (10e20 mm diameter), more mature and un-bagged roots all showed significantly slower rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.