BackgroundLipid profiles appear to be altered in rheumatoid arthritis (RA) patients because of disease activity and inflammation. Cholesterol efflux capacity (CEC), which is the ability of high-density lipoprotein cholesterol to accept cholesterol from macrophages, has been linked not only to cardiovascular events in the general population but also to being impaired in patients with RA. The aim of this study was to establish whether CEC is related to subclinical carotid atherosclerosis in patients with RA.MethodsWe conducted a cross-sectional study that encompassed 401 individuals, including 178 patients with RA and 223 sex-matched control subjects. CEC, using an in vitro assay, lipoprotein serum concentrations, and standard lipid profile, was assessed in patients and control subjects. Carotid intima-media thickness (CIMT) and carotid plaques were assessed in patients with RA. A multivariable analysis was performed to evaluate the relationship of CEC with RA-related data, lipid profile, and subclinical carotid atherosclerosis.ResultsMean (SD) CEC was not significantly different between patients with RA (18.9 ± 9.0%) and control subjects (16.9 ± 10.4%) (p = 0.11). Patients with RA with low (β coefficient −5.2 [−10.0 to 0.3]%, p = 0.039) and moderate disease activity (β coefficient −4.6 [−8.5 to 0.7]%, p = 0.020) were associated with lower levels of CEC than patients in remission. Although no association with CIMT was found, higher CEC was independently associated with a lower risk for the presence of carotid plaque in patients with RA (odds ratio 0.94 [95% CI 0.89–0.98], p = 0.015).ConclusionsCEC is independently associated with carotid plaque in patients with RA.
IntroductionTo investigate how markers of β-cell secretion (proinsulin-processing metabolites) are expressed in rheumatoid arthritis (RA) patients and their potential relation with the insulin resistance (IR) observed in these patients.MethodsThe 101 RA patients and 99 nondiabetic sex- and age-matched controls were included. IR by homeostatic model assessment (HOMA2), and β-cell secretion, as measured by insulin, split and intact proinsulin, and C-peptide levels were determined for both groups. Multiple regression analysis was performed to compare IR between groups and to explore the interrelations between RA features, proinsulin metabolites, and IR. Data were adjusted for glucocorticoids intake and for IR classic risk factors.ResultsCompared with controls, RA patients showed higher HOMA-IR (β coef., 0.40 (95% CI, 0.20 to 0.59); P = 0.00). When data were adjusted for glucocorticoids intake, noncorticosteroid patients maintained a higher IR index (β, 0.14 (0.05 to 0.24); P = 0.00). Impaired insulin processing in RA patients was detected by the onset of elevated split proinsulin levels (β, 0.70 pmol/L (0.38 to 1.02); P = 0.00). These data remained significant also when adjusted for prednisone intake (β, 0.19 (0.00 to 0.36) pmol/L; P = 0.04). Split proinsulin-to-C-peptide ratios were higher in RA patients undergoing corticosteroid therapy (β, 0.25 (0.12 to 0.38); P = 0.03) and were nearly significant in comparison between noncorticosteroids patients and controls (β, 0.16 (-0.02 to 0.34); P = 0.08). Interestingly, the impact of HOMA-IR on the ratio of intact proinsulin to C-peptide was higher in controls compared with patients (β, 6.23 (1.41 to 11.06) versus 0.43 (-0.86 to 1.71); P = 0.03).Conclusionsβ-Cell function is impaired in nondiabetic and in RA patients not taking corticoids by a mechanism that seems to be, at least in part, independent of IR.
Objectives Lipid profiles appear to be altered in SLE patients due to disease activity and inflammation. Cholesterol efflux capacity (CEC) is the ability of high-density lipoprotein cholesterol to accept cholesterol from macrophages. CEC has been linked to cardiovascular events in the general population and is impaired in SLE patients. The aim of this study was to establish whether CEC is related to subclinical carotid atherosclerosis in SLE patients. Methods The present report is of a cross-sectional study that encompassed 418 individuals: 195 SLE patients and 223 controls. CEC, using an in vitro assay, and lipoprotein serum concentrations were assessed in patients and controls. Carotid intima-media thickness and carotid plaques were evaluated in SLE patients. A multivariable analysis was performed to study the relationship of CEC to SLE-related data, lipid profile and subclinical carotid atherosclerosis. Results CEC was downregulated in SLE patients [8.1 (4.2) % vs 16.9 (10.4) %, P = 0.004). This occurred independently of traditional cardiovascular risk factors, statin use or other variations in the lipid profile related to the disease. Traditional cardiovascular risk factors, both in patients and controls, and SLE-related data such as activity, severity or damage were not associated with CEC. After multivariable regression analysis including lipid profile–related molecules, CEC was inversely and independently associated with the presence of carotid plaques in SLE patients [odds ratio 0.87 (95% CI: 0.78, 0.97), P = 0.014]. Conclusion CEC is impaired in SLE patients independently of other inflammation-related lipid profile modifications that occur during the disease. CEC is associated with carotid plaques in SLE patients.
Background Modulators of triglyceride metabolism include lipoprotein lipase (LPL), angiopoietin-like protein 4 (ANGPTL4), and apolipoprotein C-3 (ApoC3). There is evidence on the influence of this triangle of molecules on an increased risk of atherosclerotic cardiovascular disease (CV) in the general population. Patients with rheumatoid arthritis (RA) present changes in lipid profiles and accelerated CV disease. In the present study, we set out to study whether the ANGPTL4, ApoC3, and LPL axis differs in subjects with RA compared to controls. In a further step, we investigated the relationship of this axis with subclinical atherosclerosis in patients with RA. Methods Cross-sectional study that included 569 individuals, 323 patients with RA and 246 age-matched controls. ANGPTL4, ApoC3 and LPL, and standard lipid profiles were analyzed in patients and controls. Carotid intima-media thickness (cIMT) and carotid plaques were assessed in RA patients. A multivariable analysis was performed to assess whether the ANGPTL4, ApoC3, and LPL axis was altered in RA and to study its relationship with RA dyslipidemia and subclinical carotid atherosclerosis. Results Most lipid profile molecules did not differ between patients and controls. Despite this, and after fully multivariable analysis including CV risk factors, use of statins, and changes in the lipid profile caused by the disease itself, patients with RA showed higher serum levels of ANGPTL4 (beta coef. 295 [95% CI 213–376] ng/ml, p<0.001) and ApoC3 (beta coef. 2.9 [95% CI 1.7–4.0] mg/dl, p<0.001), but lower circulating LPL (beta coef. −174 [95% CI −213 to −135] ng/ml, p<0.001). ANGPTL4 serum levels were positively and independently associated with a higher cIMT in patients with RA after fully multivariable adjustment. Conclusion The axis consisting in ANGPTL4, ApoC3, and LPL is disrupted in patients with RA. ANGPTL4 serum levels are positively and independently associated with a higher cIMT in RA patients.
CETP is downregulated in patients with RA who are taking glucocorticoids. Low CETP activity is associated with an increased level of cardiovascular risk in patients with RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.