The Ne + H2+-->NeH+ + H proton transfer reaction was studied using the time dependent real wave packet quantum dynamics method at the helicity decoupling level, considering the H2+ molecular ion in the (v=0-4, j=0) vibrorotational states and a wide collision energy interval. The calculated reaction probabilities and reaction cross sections were in a rather good agreement with reanalyzed previous exact quantum dynamics results, where a much smaller collision energy interval was considered. Also, a quite good agreement with experimental data was found. These results suggested the adequacy of the approach used here to describe this and related systems.
The complex-forming CH + H2 --> CH2 + H reaction is studied employing a recently developed global potential energy function. The reaction probability in the total angular momentum J = 0 limit is estimated with a four-atom quantum wave packet method and compared with classical trajectory and statistical theory results. The formation of complexes from different reactant internal states is also determined with wave packet calculations. While there is no barrier to reaction along the minimum energy path, we find that there are angular constraints to complex formation. Trajectory-based estimates of the low-pressure rate constants are made and compared with experimental results. We find that zero-point energy violation in the trajectories is a particularly severe problem for this reaction.
Extensive quantum real wave packet calculations within the helicity decoupling approximation are used to analyze the influence of the HF vibrational excitation on the K+HF(v=0-2,j=0)-->KF+H reaction. Quantum reaction probabilities P and reaction cross sections sigma are compared with corresponding quasiclassical trajectory (QCT) results. Disregarding threshold regions for v=0 and 1 (v=2 has no threshold), both approaches lead to remarkably similar results, particularly for sigma, validating the use of the QCT method for this system. When moving from v=0 to v=1 there is a large increase in P and sigma, as expected for a late barrier system. For v=2 the reaction becomes exoergic and P approximately 0.95 (with the exception of large total angular momenta where centrifugal barriers play a role). While substantial vibrational enhancement of the reactivity is thus seen, it is still quite less than that inferred from experimental data in the intermediate and high collision energy ranges. The origin of this discrepancy is unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.