At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.
Climate change threatens to destabilize ecological communities, potentially moving them from persistently occupied “basins of attraction” to different states. Increasing variation in key ecological processes can signal impending state shifts in ecosystems. In a rocky intertidal meta-ecosystem consisting of three distinct regions spread across 260 km of the Oregon coast, we show that annually cleared sites are characterized by communities that exhibit signs of increasing destabilization (loss of resilience) over the past decade despite persistent community states. In all cases, recovery rates slowed and became more variable over time. The conditions underlying these shifts appear to be external to the system, with thermal disruptions (e.g., marine heat waves, El Niño–Southern Oscillation) and shifts in ocean currents (e.g., upwelling) being the likely proximate drivers. Although this iconic ecosystem has long appeared resistant to stress, the evidence suggests that subtle destabilization has occurred over at least the last decade.
Ecosystem stability has intrigued ecologists for decades, and the realization that the global climate was changing has sharpened and focused this interest. One possible early warning signal of decreasing stability is increasing variability in ecosystems over time with increasing climate variability. Determining climate change effects on community stability, however, requires long‐term studies of structure and underlying dynamics, including bottom‐up and top‐down effects in natural ecosystems. Although relevant datasets were rare in the early years of community ecology, such information has increased in recent decades. We investigated spatiotemporal changes in mean and variability of ecological subsidies (nutrients, phytoplankton, prey colonization), performance metrics of a dominant space occupier (mussels) and its primary predator (sea stars), and sea star predation rates on mussels in relation to climatic oscillations, temperature, and disease on rocky shores. The research involved annually repeated multiyear (~1999–2018), multisite (13 sites nested within five regions along ~260 km of the Oregon coast) observations, measurements, and experiments. We analyzed associations between environmental variables and ecological performance of key elements of the sea star‐mussel‐dominated mid intertidal system. We found that upwelling declined in some regions, but became more variable across all study regions. Air and water temperatures oscillated, but their mean and variation increased through time, with peak values coinciding with the 2014–2016 combined El Niño and Marine Heat Wave. Ecological subsidies generally declined during the study period but increased in variability. Excepting growth rate, mussel (Mytilus californianus) performance (condition index, reproductive output) generally decreased and became more variable. Primarily due to a sea star wasting epidemic, reproductive output of the top predator Pisaster ochraceus decreased and became more variable, and predation rate on mussels decreased. Analyses indicated that the primary drivers of these changes were temperature‐related environmental factors. As declining means and increasing variability of ecological performances can typify destabilizing ecosystems, and environmental trends are toward ever more stressful conditions, the outlook for this iconic ecosystem is discouraging. Immediate and rapid action to mitigate and ultimately reverse climate change likely is the only option available to prevent an irreversible shift in the future of this, and most other ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.