SUMMARY A hallmark of mitosis is the appearance of high levels of histone phosphorylation, yet the roles of these modifications remain largely unknown. Here we demonstrate that histone H3 phosphorylated at threonine 3 is directly recognized by an evolutionarily conserved binding pocket in the BIR domain of Survivin, a member of the chromosomal passenger complex (CPC). This binding mediates recruitment of the CPC to chromosomes and resulting activation of its kinase subunit Aurora B. Consistently, modulation of the kinase activity of Haspin, which phosphorylates H3T3, leads to defects in the Aurora B-dependent processes of spindle assembly and inhibition of nuclear reformation. These findings establish a direct cellular role for mitotic histone H3T3 phosphorylation, which is read and translated by the CPC to ensure accurate cell division.
SUMMARY Nuclear shape and size vary between species, during development and in many tissue pathologies, but the causes and effects of these differences remain poorly understood. During fertilization, sperm nuclei undergo a dramatic conversion from a heavily compacted form into decondensed, spherical pronuclei, accompanied by rapid nucleation of microtubules from centrosomes. Here we report that the assembly of the spherical nucleus depends on a critical balance of microtubule dynamics, which is regulated by the chromatin-binding protein Developmental pluripotency-associated 2 (Dppa2). While microtubules normally promote sperm pronuclear expansion, in Dppa2-depleted Xenopus egg extracts excess microtubules cause pronuclear assembly defects leading to abnormal morphology and disorganized DNA replication. Dppa2 inhibits microtubule polymerization in vitro, and Dppa2 activity is needed at a precise time and location during nascent pronuclear formation. This demonstrates a strict spatiotemporal requirement for local suppression of microtubules during nuclear formation, fulfilled by chromatin-bound microtubule regulators.
Immune escape is a fundamental trait of cancer. Dendritic cells (DC) that interact with T cells represent a crucial site for the development of tolerance to tumor antigens, but there remains incomplete knowledge about how DC-tolerizing signals evolve during tumorigenesis. In this study, we show that DCs isolated from patients with metastatic or locally advanced breast cancer express high levels of the adiponectin receptors AdipoR1 and AdipoR2, which are sufficient to blunt antitumor immunity. Mechanistic investigations of ligand–receptor interactions on DCs revealed novel signaling pathways for each receptor. AdipoR1 stimulated IL10 production by activating the AMPK and MAPKp38 pathways, whereas AdipoR2 modified inflammatory processes by activating the COX-2 and PPARγ pathways. Stimulation of these pathways was sufficient to block activation of NF-κB in DC, thereby attenuating their ability to stimulate antigen-specific T-cell responses. Together, our findings reveal novel insights into how DC-tolerizing signals evolve in cancer to promote immune escape. Furthermore, by defining a critical role for adiponectin signaling in this process, our work suggests new and broadly applicable strategies for immunometabolic therapy in patients with cancer.
The online version of this article has a supplementary appendix. BackgroundThe Wilms' tumor antigen (WT1) is an attractive target for immunotherapy of leukemia. In the past, we isolated and characterized the specificity and function of a WT1-specific T-cell receptor. The goal of this translational study was to develop a safe and efficient WT1-T-cell receptor retroviral vector for an adoptive immunotherapy trial with engineered T cells. Design and MethodsWe generated a panel of retroviral constructs containing unmodified or codon-optimized WT1-T-cell receptor α and β genes, linked via internal ribosome entry sites or 2A sequences, with or without an additional inter-chain disulfide bond in the T-cell receptor constant domains. These constructs were functionally analyzed in vitro, and the best one was tested in an autologous primary leukemia model in vivo. ResultsWe identified a WT1-T-cell receptor construct that showed optimal tetramer staining, antigen-specific cytokine production and killing activity when introduced into primary human T cells. Fresh CD34 + cells purified from a patient with leukemia were engrafted into NOD/SCID mice, followed by adoptive immunotherapy with patient's autologous T cells transduced with the WT1-T-cell receptor. This therapeutic treatment evidently decreased leukemia engraftment in mice and resulted in a substantial improvement of leukemia-free survival. ConclusionsThis is the first report that patient's T cells, engineered to express the WT1-T-cell receptor, can eliminate autologous leukemia progenitor cells in an in vivo model. This study provides a firm basis for the planned WT1-T-cell receptor gene therapy trial in leukemia patients. Haematologica. 2010; 95.126-134. doi:10.3324/haematol.2009 This is an open-access paper. Development of a Wilms' tumor antigen-specific T-cell receptor for clinical trials: engineered patient's T cells can eliminate autologous leukemia blasts in NOD/SCID mice
Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.