In the crystal structure of bovine mitochondrial F1-ATPase determined at 2.8 A resolution, the three catalytic beta-subunits differ in conformation and in the bound nucleotide. The structure supports a catalytic mechanism in intact ATP synthase in which the three catalytic subunits are in different states of the catalytic cycle at any instant. Interconversion of the states may be achieved by rotation of the alpha 3 beta 3 subassembly relative to an alpha-helical domain of the gamma-subunit.
The a-and ,B-subunits of membrane-bound ATP synthase complex bind ATP and ADP: B contributes to catalyic sites, and a may be involved in regulation of ATP synthase activity. The sequences of ,B-subunits are highly conserved in Escherichia coli and bovine mitochondria. Also a and ( are weakly homologous to each other throughout most of their amino acid sequences, suggesting that they have common functions in catalysis. Related sequences in both a and (3 and in other enzymes that bind ATP or ADP in catalysis, notably myosin, phosphofructokinase, and adenylate kinase, help to identify regions contributing to an adenine nucleotide binding fold in both ATP synthase subunits.
Adenosine triphosphate (ATP) synthase contains a rotary motor involved in biological energy conversion. Its membrane-embedded F0 sector has a rotation generator fueled by the proton-motive force, which provides the energy required for the synthesis of ATP by the F1 domain. An electron density map obtained from crystals of a subcomplex of yeast mitochondrial ATP synthase shows a ring of 10 c subunits. Each c subunit forms an alpha-helical hairpin. The interhelical loops of six to seven of the c subunits are in close contact with the gamma and delta subunits of the central stalk. The extensive contact between the c ring and the stalk suggests that they may rotate as an ensemble during catalysis.
The crystal structure of a novel aluminium fluoride inhibited form of bovine mitochondrial F(1)-ATPase has been determined at 2 A resolution. In contrast to all previously determined structures of the bovine enzyme, all three catalytic sites are occupied by nucleotide. The subunit that did not bind nucleotide in previous structures binds ADP and sulfate (mimicking phosphate), and adopts a "half-closed" conformation. This structure probably represents the posthydrolysis, pre-product release step on the catalytic pathway. A catalytic scheme for hydrolysis (and synthesis) at physiological rates and a mechanism for the ATP-driven rotation of the gamma subunit are proposed based on the crystal structures of the bovine enzyme.
The inner membranes of mitochondria contain three multi-subunit enzyme complexes that act successively to transfer electrons from NADH to oxygen, which is reduced to water (Fig. I). The first enzyme in the electron transfer chain, NADH:ubiquinone oxidoreductase (or complex I), is the subject of this review. It removes electrons from NADH and passes them via a series of enzyme-bound redox centres (FMN and Fe-S clusters) to the electron acceptor ubiquinone. For each pair of electrons transferred from NADH to ubiquinone it is usually considered that four protons are removed from the matrix (see section 4.1 for further discussion of this point).
A substantially enriched preparation of Alzheimer paired helical filaments (PHFs) has been used as a starting point for biochemical studies. Pronase treatment, which strips off adhering proteins, leaves a resistant core that is structurally intact. This has been used to raise a monoclonal antibody that decorates the filament core. The antibody has been used to follow the extraction of two peptide fragments (9.5 and 12 kDa) by immunoblotting. The link between the PHF as a morphological entity and these peptides has been established independently by photoaffinity labeling with a chemical ligand to the PHF core. Sequence analysis of these peptides was used to design oligonucleotide probes for cloning a cognate cDNA, which leads to its identification as human microtubule-associated tau protein. The sequencing of the 9.5- and 12-kDa peptides shows they are derived from a conserved region of tau containing three repeating segments. Since these fragments have been copurified with the Pronase-resistant core and are only released by subsequent steps, the corresponding part of the tau molecule must be tightly bound in the PHF core.
Screening of cDNA libraries prepared from the frontal cortex of an Alzheimer disease patient and from fetal human brain has led to isolation of the cDNA for a core protein of the paired helical filament of Alzheimer disease. The partial amino acid sequence of this core protein was used to design synthetic oligonucleotide probes. The cDNA encodes a protein of 352 amino acids that contains a characteristic amino acid repeat in its carboxyl-terminal half. This protein is highly homologous to the sequence of the mouse microtubule-associated protein tau and thus constitutes the human equivalent of mouse tau. RNA blot analysis indicates the presence of two major transcripts, 6 and 2 kilobases lon g, with a wide distribution in normal human brain. Tau protein mRNAs were found in normal amounts in the frontal cortex from patients with Alzheimer disease. The proof that at least part of tau protein forms a component of the paired helical filament core opens the way to understanding the mode of formation of paired helical filaments and thus, ultimately, the pathogenesis of Alzheimer disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.