Cell death can be accidental or programmed in a multicellular organism. Evidence supports the proposition that there is a 'suicide program' inherent in vertebrate cells which can be activated when the cell's death is desirable for the good of the rest of the community. The morphology of such death is usually that of apoptosis, rather than of necrosis. Here, John Cohen describes the changes of apoptosis, and discusses progress on the identification of regulatory mechanisms and genes.
Programmed cell death is an active process wherein the cell initiates a sequence of events culminating in the fragmentation of its DNA, nuclear collapse, and disintegration of the cell into small, membrane-bound apoptotic bodies. Examination of the death program in various models has shown common themes, including a rise in cytoplasmic calcium, cytoskeletal changes, and redistribution of membrane lipids. The calcium-dependent neutral protease calpain has putative roles in cytoskeletal and membrane changes in other cellular processes; this fact led us to test the role of calpain in a well-known model of apoptotic cell death, that of thymocytes after treatment with dexamethasone. Assays for calcium-dependent proteolysis in thymocyte extracts reveal a rise in activity with a peak at about 1 hr of incubation with dexamethasone, falling to background at approximately 2 hr. Western blots indicate autolytic cleavage of the proenzyme precursor to the calpain I isozyme, providing additional evidence for calpain activation. We have also found that apoptosis in thymocytes, whether induced by dexamethasone or by low-level irradiation, is blocked by specific inhibitors of calpain. Apoptosis of metamyelocytes incubated with cycloheximide is also blocked by calpain inhibitors. These studies suggest a required role for calpain in both "induction" and "release" models of apoptotic cell death.
Within minutes of exposure of target cells to cytotoxic T lymphocytes, their nuclear DNA begins to be fragmented. This phenomenon precedes 5"Cr release by at least an hour. DNA fragmentation occurs only when appropriately sensitized cytotoxic T cells are used and is not merely a result of cell death because killing of target cells by heating, freeze/thawing, or lysing with antibody and complement did not yield DNA fragments. Agarose gel electrophoresis of target cell DNA showed discrete multiples of an approximately 200-base-pair subunit, suggesting that fragmentation was the result of activation of a specific endonuclease. A similar pattern of DNA fragments is observed during glucocorticoid-induced killing of mouse thymocytes. The endonuclease in that case is inhibited by zinc ions, and we find that Zn2+ also inhibits DNA fragmentation and 51Cr release induced by cytotoxic T cells, suggesting a final common biochemical pathway for both types of cell death.
Death of some cells in the mammalian body is clearly programmed. In the immune system there are many examples of programmed cell death, during development of lymphocytes as well as at later stages, after interaction with antigen. Many of these examples display the morphology of apoptosis: They undergo shrinkage and zeiosis, the nucleus collapses, and chromatin is cleaved into nucleosomal fragments. The cell is rapidly recognized by phagocytes and disposed of without releasing its contents. In some but not all cases of apoptosis, new macromolecular synthesis is required. Cytotoxic T cells induce changes in their targets that are morphologically apoptotic. The mechanism of apoptosis is currently under active investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.