The paper illustrates an investigation on the effectiveness of dissipative bracing (DB) systems for seismic retrofit of buildings with sensitive non-structural components (NSCs) and technological content (TC), such as medical centers. The "Giovanni Paolo II" hospital, located in a high seismic prone area in Southern Italy, is chosen as case-study. The retrofit intervention with hysteretic braces is designed according to the Italian Building Code. The seismic response of the hospital building is investigated by means of non-linear history analyses carried out in OpenSees FE code and, in order to verify the full-operation after the earthquake, the integrity of NSCs and TC is checked. The retrofit design, thanks to the stiffening and damping effects introduced by DB system, proves suitable to protect both the structural frame and "drift-sensitive" non-structural components and content even under severe earthquakes (PGA = 0.45 g). Nevertheless, some concerns arise about the suitability of hysteretic braces for the protection of the "acceleration-sensitive" elements of the medical complex. Indeed, during weak earthquakes (PGA = 0.17 g), failures of several of these components are detected which can substantially impair the operation of the hospital in the aftermath of the seismic event.
Summary This paper investigates the isolation performance of curved surface sliders (CSSs) with different damping mechanisms. The following passive damping mechanisms are considered: passive friction damping as commonly present in CSSs, linear viscous damping as linear damping mechanism, and bow tie friction as adaptive, that is, position‐dependent, but passive approach; CSSs with adaptive behaviour based on different sliding regimes are not considered. From the field of CSSs with semiactive dampers, two control strategies are considered: amplitude proportional friction damping aiming at linearizing the friction damping over one cycle and semiactively controlled damping and stiffness properties to enhance the decoupling between ground and structure by the emulation of zero dynamic stiffness. The CSSs under consideration are assessed in terms of peak structural acceleration, peak CSS horizontal force and displacement, and recentring error as function of peak ground acceleration (PGA) of the accelerograms. The results demonstrate that (a) friction damping can be optimized at one PGA only due to its nonlinearity, (b) the optimization of linear viscous damping does not depend on PGA, (c) optimized bow tie friction improves the isolation at low PGA while the isolation at medium to high PGAs worsens, (d) optimized amplitude proportional friction damping does not improve the isolation compared with optimized linear viscous damping, and (e) zero dynamic stiffness is preferably emulated only for a certain range of CSS relative motion amplitude to keep the recentring error within acceptable limits.
This paper reports on a series of shaking table tests on a full-scale flat-bottom steel silo filled with soft wheat, characterized by aspect ratio of around 0.9. The specimen was a 3.64-m diameter and 5.50-m high corrugated-wall cylindrical silo. Multiple sensors were used to monitor the static and dynamic response of the filled silo system, including accelerometers and pressure cells. Numerous unidirectional dynamic tests were performed consisting of random signals, sinusoidal inputs, and both artificial and real earthquake records. The objectives of this paper are (i) to provide a general overview of the whole experimental campaign and (ii) to present selected results obtained for the fixed-base configuration. The measured data were processed to assess the static pressures, the dynamic overpressures (related to the effective mass) and the accelerations of monitored points on the silo wall, and to identify the basic dynamic properties (fundamental frequency of vibration, damping ratio, dynamic amplification factors) of the filled silo. The main findings are discussed and compared with the This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Abstract:The design of curved surface sliders (CSS) based on the elastic response spectrum method with site-specific seismic input is commonly made by trial and error, whereby the design does not necessarily minimize structural acceleration. This paper therefore describes the optimum CSS design for minimum structural acceleration for given site-specific seismic input. All valid CSS designs and the optimum CSS design are represented by their associated trajectory in the elastic response spectrum plane that visualizes the optimization problem. The results demonstrate that the optimum CSS design is not obtained at maximum tolerated effective damping ratio. The subsequent sensitivity analysis describes how much the structural acceleration increases if the actual friction coefficient of the real CSS deviates from its optimum design value. The analysis points out that the increase in structural acceleration is approximately one order of magnitude smaller than the deviation in friction. The sensitivity data may be used by structural engineers to determine tolerable deviations in friction coefficient ensuring acceptable structural accelerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.