This paper describes experimental and modeled wind-induced oscillations in Upper Lake Constance with an emphasis on a coherent understanding of the basin-scale internal dynamics in this example of a large and stratified lake. Data were collected with eight Lake Diagnostic Systems (LDSs) consisting of thermistor chains and wind anemometers. The isotherm displacements as measured by the LDSs were interpreted using the three-dimensional hydrodynamic Estuary and Lake Computer Model (ELCOM). Three types of basin-scale waves were found to dominate the wave motion: the vertical mode-one Kelvin wave that had an observed period around 90 h, two vertical mode-one Poincaré waves that had periods near 8 h and 12 h, and a vertical mode-two Poincaré wave that had a period near 14 h. After strong westerly winds, upwelling of cold bottom water was observed east of the Sill of Mainau, where the lake's two subbasins connect. The width and length ratios of the subbasins, spatial variations of the wind field, and rotational effects over the lake are shown to play critical roles in the details of the upwelling structure. A sudden fall of the isotherms in Lake Ü berlingen formed a surge. The reflection of the surge from the northwestern boundary induced a vertical mode-two response leading to an intrusion in the metalimnion that caused a three-layer velocity structure in the smaller subbasin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.