Resumo -Abstract -The goal of this study was to evaluate the performance and select probability density functions to describe the diametric distributions of the forest community and the main three species in a tropical rain forest in southern of Rio de Janeiro State. We tested the functions: Normal, Normal Log, Beta, Gamma, Sb Johnson and Weibull. Adjustments were carried out using Solver tool (MSExcel®) which uses the reduced linear gradient algorithm, optimizing the functions parameters. Value D Kolmogorov-Smirnov and estimation of standard error (Syx%) were evaluate to select the best model. In general, Sb Johnson and Weibull functions presented better statistics adjustment and greater precision in the estimates. Even representing the reality of the distribution, the smaller class intervals did not provide better adjustments, more precise estimates being provided by the larger ranges and smaller classes. ISSN: 1983ISSN: -2605 IntroduçãoAs florestas tropicais são caracterizadas pela alta densidade de plantas e pela grande diversidade de espécies, cujos ritmos de crescimento são, em geral, diferentes (Rangel et al., 2006;Puig, 2008). Em resposta aos ritmos distintos de crescimento e à grande variação de idade das árvores, a estrutura diamétrica apresenta configuração diferenciada entre tipologias florestais, estágios sucessionais e para espécies ou grupos de espécies quando analisadas individualmente.O estudo das distribuições de diâmetros teve início em 1898, quando François De Liocourt estabeleceu seu conceito para florestas naturais multiâneas (Barros et
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.