Many species of fungi including lichenized fungi (lichens) and algae have the ability to biosynthesize biologically active compounds. They produce, among others, polysaccharides with anticancer and immunostimulatory properties: (1) Background: This paper presents the characteristics of the most important bioactive compounds produced by fungi and algae; (2) Methods: Based on the example of the selected species of mushrooms, lichens and algae, the therapeutic properties of the secondary metabolites that they produce and the possibilities of their use are presented; (3) Results: The importance of fungi, especially large-fruited mushrooms, lichens and algae, in nature and human life is discussed, in particular, with regard to their use in the pharmaceutical industry and their nutritional value; (4) Conclusions: The natural organisms, such as fungi, lichenized fungi and algae, could be used as supplementary medicine, in the form of pharmaceutical preparations and food sources. Further advanced studies are required on the pharmacological properties and bioactive compounds of these organisms.
This study, carried out in 2010–11, focuses on species composition and distribution of cyanobacterial and algal communities colonizing ten caves (Biała, Ciemna, Koziarnia, Krakowska, Łokietka, Okopy Wielka Dolna, Sąspowska, Sypialnia, Zbójecka and Złodziejska Caves) in the Ojców National Park (South Poland). A total of 85 taxa were identified, 35 of them belonging to cyanobacteria, 30 chlorophytes, and 20 belonging to other groups of algae. Aerophytic cyanobacteria dominated in these calcareous habitats. Nine species, <em>Gloeocapsa alpina, Nostoc commune, Chlorella vulgaris, Dilabifilum arthopyreniae, Klebsormidium flaccidum, Muriella decolor, Neocystis subglobosa, </em>and <em>Orthoseira roseana</em>, were the most abundant taxa in all the caves. The investigated microhabitats offer relatively stable microclimatic conditions and are likely to be responsible for the observed vertical distribution of aerophytic cyanobacteria and algae.
Ulva flexuosa subsp. pilifera (Kütz.) M. J. Wynne 2005 (= Enteromorpha pilifera Kützing 1845) was previously found in Argentina, the Czech Republic, Germany, Hungary, Romania, Slovakia and Sweden, recently also in Poland. The genus Ulva was first time described as Enteromorpha. Interestingly, Enteromorpha is used nowadays as a synonym for Ulva, a development which is based on molecular data. The morphologies of both young and mature specimens were studied, and most life cycle stages could be observed. Further, the formation of calcium carbonate crystals on the surface of Ulva thalli seems to influence the arrangement of the cells. A detailed ultrastructural (TEM) analysis of cell walls is presented. The TEM reveals in great details highly complex, irregular structures with stratification lines
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.