This exploration is the first step in identifying how types and categories of features impact outcomes. While the findings are inconclusive due to lack of homogeneity, this provides a foundation for future feature analysis.
Community engagement remains a primary objective of public health practice. While this approach has been adopted with success in response to many community health issues, it is rarely adopted in chemical disaster response. Empirical research suggests that management of chemical disasters focuses on the emergency response with almost no community engagement for long-term recovery. Graniteville, an unincorporated and medically underserved community in South Carolina was the site of one of the largest chlorine exposures by a general US population. Following the immediate response, we sought community participation and partnered with community stakeholders and representatives in order to address community-identified health and environmental concerns. Subsequently, we engaged the community through regular town hall meetings, harnessing community capacity, forming coalitions with existing local assets like churches, schools, health centers, and businesses, and hosting community-wide events like health picnics and screenings. Information obtained from these events through discussions, interviews, and surveys facilitated focused public health service which eventually transitioned to community-driven public health research. Specific outcomes of the community engagement efforts and steps taken to ensure sustainability of these efforts and outcomes will be discussed.
BackgroundChemical exposures pose a significant threat to life. A rapid assessment by first responders and emergency nurses is required to reduce death and disability. Currently, no informatics tools exist to process victims of chemical exposures efficiently. The surge of patients into a hospital emergency department during a mass casualty incident creates additional stress on an already overburdened system, potentially placing patients at risk and challenging staff to process patients for appropriate care and treatment efficacy. Traditional emergency department triage models are oversimplified during highly stressed mass casualty incident scenarios in which there is little margin for error. Emerging mobile technology could alleviate the burden placed on nurses by allowing the freedom to move about the emergency department and stay connected to a decision support system.ObjectiveThis study aims to present and evaluate a new mobile tool for assisting emergency department personnel in patient management and triage during a chemical mass casualty incident.MethodsOver 500 volunteer nurses, students, and first responders were recruited for a study involving a simulated chemical mass casualty incident. During the exercise, a mobile application was used to collect patient data through a kiosk system. Nurses also received tablets where they could review patient information and choose recommendations from a decision support system. Data collected was analyzed on the efficiency of the app to obtain patient data and on nurse agreement with the decision support system.ResultsOf the 296 participants, 96.3% (288/296) of the patients completed the kiosk system with an average time of 3 minutes, 22 seconds. Average time to complete the entire triage process was 5 minutes, 34 seconds. Analysis of the data also showed strong agreement among nurses regarding the app’s decision support system. Overall, nurses agreed with the system 91.6% (262/286) of the time when it came to choose an exposure level and 84.3% (241/286) of the time when selecting an action.ConclusionsThe app reliably demonstrated the ability to collect patient data through a self-service kiosk system thus reducing the burden on hospital resources. Also, the mobile technology allowed nurses the freedom to triage patients on the go while staying connected to a decision support system in which they felt would give reliable recommendations.
Purpose To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. Design The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Methods Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Findings Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Conclusions Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. Clinical Relevance This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.