Apoptosis-inducing factor (AIF), a key regulator of cell death, is essential for normal mammalian development and participates in pathological apoptosis. The proapoptotic nature of AIF and its mode of action are controversial. Here, we show that the yeast AIF homologue Ynr074cp controls yeast apoptosis. Similar to mammalian AIF, Ynr074cp is located in mitochondria and translocates to the nucleus of yeast cells in response to apoptotic stimuli. Purified Ynr074cp degrades yeast nuclei and plasmid DNA. YNR074C disruption rescues yeast cells from oxygen stress and delays age-induced apoptosis. Conversely, overexpression of Ynr074cp strongly stimulates apoptotic cell death induced by hydrogen peroxide and this effect is attenuated by disruption of cyclophilin A or the yeast caspase YCA1. We conclude that Ynr074cp is a cell death effector in yeast and rename it AIF-1 (Aif1p, gene AIF1).
The protein kinase inhibitor staurosporine is one of the most potent and frequently used proapoptotic stimuli, although its mechanism of action is poorly understood. Here, we show that staurosporine as well as its analog 7-hydroxystaurosporine (UCN-01) not only trigger the classical mitochondrial apoptosis pathway but, moreover, activate an additional novel intrinsic apoptosis pathway. Unlike conventional anticancer drugs, staurosporine and UCN-01 induced apoptosis in a variety of tumor cells overexpressing the apoptosis inhibitors Bcl-2 and Bcl-x(L). Furthermore, activation of this novel intrinsic apoptosis pathway by staurosporine did not rely on Apaf-1 and apoptosome formation, an essential requirement for the mitochondrial pathway. Nevertheless, as demonstrated in caspase-9-deficient murine embryonic fibroblasts, human lymphoma cells, and chicken DT40 cells, staurosporine-induced apoptosis was essentially mediated by caspase-9. Our results therefore suggest that, in addition to the classical cytochrome c/Apaf-1-dependent pathway of caspase-9 activation, staurosporine can induce caspase-9 activation and apoptosis independently of the apoptosome. Since staurosporine derivatives have proven efficacy in clinical trials, activation of this novel pathway might represent a powerful target to induce apoptosis in multidrug-resistant tumor cells.
PKCa and Ets1 are both associated with breast cancer progression. Our previous studies suggested that these proteins are likely to functionally interact with one another. Here, we show that attenuation of endogenous PKCa expression (siPa) by RNA interference leads to reduced Ets1 protein expression in a variety of cancer cells. Pulse-chase experiments and treatment with proteasome inhibitor MG-132 revealed that siPa interferes with both Ets1 protein synthesis and stability. The effect of siPa on Ets1 expression could be partially prevented by KN-93, suggesting that calcium/calmodulin-dependent kinase II (CaMKII), a modulator of Ets1 activity, may play a role in PKCa-dependent Ets1 regulation. In contrast, Ets1-regulating kinases ERK1/ 2 were not found to be involved in this process. To assess the importance of the PKCa/Ets1 interaction, we compared the biological responses of MDA-MB-231 cells to PKCa-and Ets1-specific siRNAs (siE1). While only siPa induced changes in cellular morphology and anchorage-independent growth, both siRNAs similarly affected cellular responses to the antitumor drug mithramycin A and to UV light. Microarray analyses further showed that the expression of a certain set of genes was equally affected by siPa and siE1. The data suggest that Ets1 serves as an effector for PKCa to fulfil certain functions in cancer cells.
In addition to cell shrinkage, membrane blebbing, DNA fragmentation and phosphatidylserine exposure, intracellular acidification represents a hallmark of apoptosis. Although the mechanisms underlying cytosolic acidification during apoptosis remained largely elusive, a pivotal role of mitochondria has been proposed. In order to investigate the involvement of mitochondria in cytosolic acidification during apoptosis, we blocked the mitochondrial death pathway by overexpression of Bcl-2 and subsequently activated the death receptor pathway by anti-CD95 or TRAIL or the mitochondrial pathway by staurosporine. We show that Bcl-2 but not caspase inhibition prevented staurosporine-induced intracellular acidification. Thus, intracellular acidification in mitochondrial apoptosis is a Bcl-2-inhibitable, but caspase-independent process. In contrast, Bcl-2 only slightly delayed, but did not prevent intracellular acidification upon triggering of death receptors. The Na(+)/H(+) exchanger NHE1 was partially degraded during apoptosis but only to a small extent and and at a delayed time point when cytosolic acidification was almost completed. We therefore conclude that cytosolic acidification is mitochondrially controlled in response to mitochondria-dependent death stimuli, but requires additional caspase-dependent mechanisms during death receptor-mediated apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.