BackgroundMethylation plays an important role in the etiology and pathogenesis of colorectal cancer (CRC). This study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) and pathways in CRC by comprehensive bioinformatics analysis.MethodsData of gene expression microarrays (GSE68468, GSE44076) and gene methylation microarrays (GSE29490, GSE17648) were downloaded from GEO database. Aberrantly methylated-DEGs were obtained by GEO2R. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. MCODE was used for module analysis of the PPI network.ResultsTotally 411 hypomethylation-high expression genes were identified, which were enriched in biological processes of response to wounding or inflammation, cell proliferation and adhesion. Pathway enrichment showed cytokine–cytokine receptor interaction, p53 signaling and cell cycle. The top 5 hub genes of PPI network were CAD, CCND1, ATM, RB1 and MET. Additionally, 239 hypermethylation-low expression genes were identified, which demonstrated enrichment in biological processes including cell–cell signaling, nerve impulse transmission, etc. Pathway analysis indicated enrichment in calcium signaling, maturity onset diabetes of the young, cell adhesion molecules, etc. The top 5 hub genes of PPI network were EGFR, ACTA1, SST, ESR1 and DNM2. After validation in TCGA database, most hub genes still remained significant.ConclusionIn summary, our study indicated possible aberrantly methylated-differentially expressed genes and pathways in CRC by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of CRC. Hub genes including CAD, CCND1, ATM, RB1, MET, EGFR, ACTA1, SST, ESR1 and DNM2 might serve as aberrantly methylation-based biomarkers for precise diagnosis and treatment of CRC in the future.
Background: Emerging evidence suggested that aberrant alternative splicing (AS) is pervasive event in development and progression of cancer. However, the information of aberrant splicing events involved in colorectal carcinogenesis and progression is still elusive.Materials and Methods: In this study, splicing data of 499 colon adenocarcinoma cases (COAD) and 176 rectum adenocarcinoma (READ) with clinicopathological information were obtained from The Cancer Genome Atlas (TCGA) to explore the changes of alternative splicing events in relation to the carcinogenesis and prognosis of colorectal cancer (CRC). Gene interaction network construction, functional and pathway enrichment analysis were performed by multiple bioinformatics tools.Results: Overall, most AS patterns were more active in CRC tissues than adjacent normal ones. We detected altogether 35391 AS events of 9084 genes in COAD and 34900 AS events of 9032 genes in READ, some of which were differentially spliced between cancer tissues and normal tissues including genes of SULT1A2, CALD1, DTNA, COL12A1 and TTLL12. Differentially spliced genes were enriched in biological process including muscle organ development, cytoskeleton organization, actin cytoskeleton organization, biological adhesion, and cell adhesion. The integrated predictor model of COAD showed an AUC of 0.805 (sensitivity: 0.734; specificity: 0.756) while READ predictor had an AUC of 0.738 (sensitivity: 0.614; specificity: 0.900). In addition, a number of prognosis-associated AS events were discovered, including genes of PSMD2, NOL8, ALDH4A1, SLC10A7 and PPAT.Conclusion: We draw comprehensive profiles of alternative splicing events in the carcinogenesis and prognosis of CRC. The interaction network and functional connections were constructed to elucidate the underlying mechanisms of alternative splicing in CRC.
Supplemental Digital Content is available in the text
BackgroundThere are increasing studies examining the relationship between the status of H. pylori oipA gene and peptic ulcer disease (PUD) and gastric cancer (GC) but the results turn out to be controversial. We attempted to clarify whether oipA gene status is linked with PUD and/or GC risks.MethodsA systematically literature search was performed through four electronic databases. According to the specific inclusion and exclusion criteria, seven articles were ultimately available for the meta-analysis of oipA presence/absence with PUD and GC, and eleven articles were included for the meta-analysis of oipA on/off status with PUD and GC.ResultsFor the on/off functional status analysis of oipA gene, the “on” status showed significant associations with increased risks of PUD (OR = 3.97, 95% CI: 2.89, 5.45; P < 0.001) and GC (OR = 2.43, 95% CI: 1.45, 4.07; P = 0.001) compared with gastritis and functional dyspepsia controls. Results of the homogeneity test indicated different effects of oipA “on” status on PUD risk between children and adult subgroups and on GC risk between PCR-sequencing and immunoblot subgroups. For the presence/absence analysis of oipA gene, we found null association of the presence of oipA gene with the risks of PUD (OR = 1.93, 95% CI: 0.60, 6.25; P = 0.278) and GC (OR = 2.09, 95% CI: 0.51, 8.66; P = 0.308) compared with gastritis and functional dyspepsia controls.ConclusionsTo be concluded, when oipA exists, the functional “on” status of this gene showed association with increased risks for PUD and GC compared with gastritis and FD controls. However, merely investigating the presence/absence of oipA would overlook the importance of its functional on/off status and would not be reliable to predict risks of PUD and GC. Further large-scale and well-designed studies concerning on/off status of oipA are required to confirm our meta-analysis results.
BackgroundPepsinogen C (PGC) plays an important role in sustaining the cellular differentiation during the process of gastric carcinogenesis. This study aimed to assess the role of PGC tagSNPs and their interactions with Helicobacter pylori (H. pylori) in the development of gastric cancer and its precursor, atrophic gastritis.MethodsFour PGC tagSNPs (rs6941539, rs6912200, rs3789210 and rs6939861) were genotyped by Sequenom MassARRAY platform in a total of 2311 subjects consisting of 642 gastric cancer, 774 atrophic gastritis, and 895 healthy control subjects. The mRNA and protein expression levels of PGC in gastric tissues and in serum were respectively measured by quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR), immunohistochemistry, and Eenzyme-linked immunoabsorbent assay (ELISA).ResultsWe found associations between PGC rs3789210 CG/GG genotypes and reduced gastric cancer risk and between PGC rs6939861 A variant allele and increased risks of both gastric cancer and atrophic gastritis. As for the haplotypes of PGC rs6941539-rs6912200-rs3789210-rs6939861 loci, the TTCA and TTGG haplotypes were respectively associated with increased and reduced risks of both gastric cancer and atrophic gastritis; additionally, the CTCA haplotype was associated with increased atrophic gastritis risk. Very interestingly, rs6912200 CT/TT genotypes had a positive interaction with H. pylori, synergistically elevating the gastric cancer risk. Moreover, healthy subjects who carried rs6912200 CT, TT and CT/TT variant genotypes had lower histological and serum expression levels of PGC protein.ConclusionsOur findings highlight an important role of PGC rs3789210 and rs6939861 in altering susceptibility to atrophic gastritis and/or gastric cancer. Moreover, people who carry rs6912200 variant genotypes exhibit higher gastric cancer risk in case of getting H. pylori infection, which strongly suggest a necessity of preventing and/or eliminating H. pylori infection in those individuals.
Minichromosome maintenance proteins (MCM) played a critical role in replication and cell cycle progression. However, their prognostic roles in cancer remain controversial. Therefore, we performed a meta-analysis to investigate the prognostic value of MCMs in cancers. Totally 31 eligible articles with 7653 cancer patients were included in this meta-analysis. We evaluated the relationship between MCMs expression and overall survival (OS) in various cancer patients by using pooled hazard ratios (HRs) and risk ratios (RRs) with 95% confidence intervals (CIs). The meta-analysis showed that carriers with high expression of MCM5 and MCM7 were significantly associated with short OS for pooled HR (HR=1.04, 95% CI=1.01-1.08, P=0.020, HR=1.78, 95% CI=1.04-3.02, P=0.035, respectively). For pooled RR, individuals with increased MCM2 and MCM7 expression were significantly correlated with poor OS (RR=2.30, 95% CI=1.14-4.63, P=0.019; RR=3.52, 95% CI=2.01-6.18, P<0.001, respectively). The findings suggest that high expression of MCM2, MCM5 and MCM7 might serve as predictive biomarkers for poor prognosis in cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.