Correlation analysis between precipitable water vapor (PWV) and precipitation over China was conducted combining high-quality PWV data based on 1999-2015 Ground-Based Global Positioning System (GPS) observations with the measurements at matched meteorological stations in the same period. The mean correlation coefficient (R) at all the stations is approximately 0.73, indicating that there is a significant positive correlation between PWV content and precipitation measurements, and the comparison of correlation among different climate types suggests that the distribution characteristics of the correlation coefficients are distinctively related to different climate types. There is also some positive correlation between PWV and precipitation long-term trends with the correlation coefficients of monthly anomalies ranging generally from 0.2 to 0.6. Furthermore, the intensity of both PWV and precipitation extremes shows a long-term upward trend overall, with the most intense events showing more significant increases. The extreme precipitation-temperature scaling rate of changes can reach above Clausius-Clapeyron (CC) scaling, while that of the extreme PWV-temperature is sub-CC overall, with regional differences in the specific scaling values. The correlation analysis in this work is of great significance for long-term climate analysis and extreme weather understanding, which provides a valuable reference for better utilizing the advantages of PWV data to carry out the studies above.
GPS data during Typhoon Lekima at 700 stations in China were processed by the Precise Point Positioning (PPP) method. A refined regional Tm model was used to derive the precipitable water vapor (PWV) at these GPS stations. Spatio-temporal variations of PWV with the typhoon process were analyzed. As the typhoon approached, PWV at stations near the typhoon center increased sharply from about 50 mm to nearly 80 mm and then dropped back to about 40–50 mm as the typhoon left. Comparisons of GPS, radiosonde, the Global Data Assimilation System (GDAS) Global Forecast System (GFS) analysis products and ERA5 reanalysis products at four matched GPS-RS stations show overall overestimations of PWV from radiosonde, GFS and ERA5 compared with GPS in a statistical perspective. An empirical orthogonal functions (EOF) analysis of the PWV during the typhoon event revealed some different patterns of variability, with both the first EOF (~36.1% of variance) and second EOF (~30.3% of variance) showing distinctively large anomalies over the typhoon landing locations. The typhoon caused a large horizontal tropospheric gradient (HTG) with the magnitude reaching 5 mm and the direction pointing to the typhoon center when it made a landfall on mainland China. The magnitude and the consistency of the HTG direction decreased overall as the typhoon weakened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.