Quick access to cadmium (Cd) contamination in lettuce is important to supervise the leafy vegetable growth environment and market. This study aims to apply laser-induced breakdown spectroscopy (LIBS) technology for fast determination of Cd content and diagnosis of the Cd contamination degree in lettuce. Emission lines Cd II 214.44 nm, Cd II 226.50 nm, and Cd I 228.80 nm were selected to establish the univariate analysis model. Multivariate analysis including partial least squares (PLS) regression, was used to establish Cd content calibration models, and PLS model based on 22 variables selected by genetic algorithm (GA) obtained the best performance with correlation coefficient in the prediction set Rp2 = 0.9716, limit of detection (LOD) = 1.7 mg/kg. K-Nearest Neighbors (KNN) and random forest (RF) were used to analyze Cd contamination degree, and RF model obtained the correct classification rate of 100% in prediction set. The preliminary results indicate LIBS coupled with chemometrics could be used as a fast, efficient and low-cost method to assess Cd contamination in the vegetable industry.
Fast detection of heavy metals in lettuce is significant for food market regulation and the control of heavy metal pollution. Advanced methods like laser-induced breakdown spectroscopy (LIBS) technology have been tried to determine the cadmium (Cd) content. To retard the negative effect of complex matrix composition from samples and improve quantitative performance of LIBS technology, the pyrolysis process combined with LIBS was adopted to determine the cadmium (Cd) content of lettuce. Adaptive iteratively reweighted penalized least squares (airPLS) was used to preprocess the LIBS spectra and solve the baseline drift. For multivariate linear regression based on the three selected Cd emission lines correlation coefficient in the prediction set Rp2 increased from 0.9154 to 0.9969, and the limit of detection (LOD) decreased from 9.1 mg/kg to 0.9 mg/kg after the pyrolysis process. The partial least squares (PLS) regression and support vector regression (SVR) were applied to construct calibration models based on full spectra. In addition, the least absolute shrinkage and selection operator (LASSO) was implemented to choose limited lines to predict the Cd content. The PLS model with the pyrolysis process obtained the best results with Rp2 = 0.9973 and LOD = 0.8 mg/kg. The results indicated that the pyrolysis method could enhance the spectral signal of cadmium and thus significantly improve the analysis results for all the models. It is shown in this experiment that proper sample preprocessing could effectively amplify the Cd signal in LIBS and make LIBS measurement an efficient method to assess Cd contamination in the vegetable industry.
In this study, a comprehensive prediction model of surface roughness on arc surface of 15-5PH stainless steel is constructed, which is considered to consist of the certain part and uncertain part. The certain part considered to be dependent on path interval and scallop height is formulated in theory using kinematics analysis and geometric modeling. The uncertain part related to the machining system stability, cooling condition and milling modes is empirically predicted by partial least squares based on experimental data. Then, the prediction model is integrated into particle swarm optimization algorithm to find the optimal parameters for the maximum material removal rate (MRR). Finally, the verification experiments considering validation of prediction model and optimal parameters are conducted. The experimental results show that the prediction accuracy presents well with the mean prediction error 10.49%. The optimization also satisfies the constraint of surface roughness with a 262% increase in MRR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.