Rib fracture is the most common thoracic clinical trauma. Most patients have multiple different types of rib fracture regions, so accurate and rapid identification of all trauma regions is crucial for the treatment of rib fracture patients. In this study, a two-stage rib fracture recognition model based on nnU-Net is proposed. First, a deep learning segmentation model is trained to generate candidate rib fracture regions, and then, a deep learning classification model is trained in the second stage to classify the segmented local fracture regions according to the candidate fracture regions generated in the first stage to determine whether they are fractures or not. The results show that the two-stage deep learning model proposed in this study improves the accuracy of rib fracture recognition and reduces the false-positive and false-negative rates of rib fracture detection, which can better assist doctors in fracture region recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.