In the present work, to investigate the hydraulic losses and safe operation of nozzle check valves in industrial piping systems, the static characteristics of the valve and its dynamic behavior in the pipeline system were studied using an experimental bench with a visual DN300 nozzle check valve. Besides, basing on the PIV (Particle Image Velocimetry) technique measures the valve steady-state flow field under the different flow rates. The study has shown that as the flow rate rises, the valve disc displacement slowly increases to 44 mm, then rapidly increases to a maximum displacement of 72 mm. When the Reynolds number exceeds 5 × 105, the relationship between pressure drop and flow obeys a quadratic function. The local vortex area formed by the flow passage near the downstream deflector expands with the flow improvement. As the increase of flowrate, at low flow operating conditions, the downstream flow velocity in the local high-speed area near the valve body increases; at medium operating conditions, the area’s flow velocity decreases; at high flow work, this local high-speed area disappears. When the fluid deceleration is lower than 4 m/s2, the dynamic behavior satisfies the quadratic curve when the maximum slope is only 0.354, which shows that this nozzle check valve has a favorable response to the system.
Check valves are used extensively in industrial piping systems. Based on dynamic mesh technology, this study uses the RNG k-ε turbulence model to numerically calculate the dual disc check valve’s three-dimensional transient flow. The dynamic characteristics of the check valve in the pipeline system are also experimentally studied. To this end, the two discs are opened synchronously during the valve-opening process, including four stages: opening discs at a constant angular velocity, opening slowing down discs, slowly returning discs to the balance point, and discs maintaining oscillation. However, the movements of the two discs are asynchronous in the valve-closing process. As the downstream pressure increases, the valve disc begins to close, and the flow gradually stops; reverse flow takes shape, and the reverse flow stops until the discs are fully closed, and slamming of the check valve occurs. The non-dimensional dynamic characteristic curve of this type of dual disc check valve has a slope of about 1.624, which mirrors the response of the check valve closing to the occurrence of the water hammer in the system. Knowing the dynamic behavior can be convenient in designing and selecting a check valve and regulating piping system working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.