Surgical site infections (SSI) cause substantial morbidity and pose a burden to acute healthcare services after surgery. We aimed to investigate whether a smartphone-delivered wound assessment tool can expedite diagnosis and treatment of SSI after emergency abdominal surgery. This single-blinded randomised control trial (NCT02704897) enroled adult emergency abdominal surgery patients in two tertiary care hospitals. Patients were randomised (1:1) to routine postoperative care or additional access to a smartphone-delivered wound assessment tool for 30-days postoperatively. Patient-reported SSI symptoms and wound photographs were requested on postoperative days 3, 7, and 15. The primary outcome was time-to-diagnosis of SSI (Centers for Disease Control definition). 492 patients were randomised (smartphone intervention: 223; routine care: 269). There was no significant difference in the 30-day SSI rate between trial arms: 21 (9.4%) in smartphone vs 20 (7.4%, p = 0.513) in routine care. Among the smartphone group, 32.3% (n = 72) did not utilise the tool. There was no significant difference in time-to-diagnosis of SSI for patients receiving the intervention (−2.5 days, 95% CI: −6.6−1.6, p = 0.225). However, patients in the smartphone group had 3.7-times higher odds of diagnosis within 7 postoperative days (95% CI: 1.02−13.51, p = 0.043). The smartphone group had significantly reduced community care attendance (OR: 0.57, 95% CI: 0.34−0.94, p = 0.030), similar hospital attendance (OR: 0.76, 95% CI: 0.28−1.96, p = 0.577), and significantly better experiences in accessing care (OR: 2.02, 95% CI: 1.17−3.53, p = 0.013). Smartphone-delivered wound follow-up is feasible following emergency abdominal surgery. This can facilitate triage to the appropriate level of assessment required, allowing earlier postoperative diagnosis of SSI.
Abnormal antioxidative capabilities were observed in the pathogenesis of steroid-induced osteoporosis (SIOP). Ferroptosis is a recently discovered type of cell death that is characterized by the overproduction of ROS in response to GPX4 and system Xc− downregulation, which is mediated by an Fe2+ fenton reaction. However, investigations focusing on the relationship between ferroptosis and steroid-induced bone disease remain limited. In the present study, high-dose dexamethasone was used to establish a mouse SIOP model, and extracellular vesicles extracted from bone marrow-derived endothelial progenitor cells (EPC-EVs) alleviated the pathological changes in SIOP via microtomography (micro-CT), with elevations in bone volume (BV), bone surface (BS), trabecular thickness (Tb.Th), and trabecular connectivity density (Conn-D) and decreases in trabecular separation (Tb.sp) and the structure model index (SMI). Histopathological analysis, such as haematoxylin and eosin (HE) and Masson staining, showed that EPC-EVs treatment increased the volume and density of the trabecular bone and bone marrow. RNA sequencing (RNA-seq) and bioinformatics analysis revealed subcellular biological alterations upon steroid and EPC-EVs treatment. Compared with the control, high-dose dexamethasone downregulated GPX4 and system XC−, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)-based gene set enrichment analysis suggested that the ferroptotic pathway was activated. In contrast, combination treatment with EPC-EVs partly reversed the KEGG-mapped changes in the ferroptotic pathway at both the gene and mRNA expression levels. In addition, alterations in ferroptotic marker expression, such as SLC3A2, SLC7A11, and GPX4, were further confirmed by RNA-seq. EPC-EVs were able to reverse dexamethasone treatment-induced alterations in cysteine and several oxidative injury markers, such as malondialdehyde (MDA), glutathione (GSH), and glutathione disulphide (GSSG) (as detected by ELISA). In conclusion, EPC-EVs prevented mouse glucocorticoid-induced osteoporosis by suppressing the ferroptotic pathway in osteoblasts, which may provide a basis for novel therapies for SIOP in humans.
The objective of our study was to introduce community quarantine strategy against coronavirus disease 2019 (COVID-19) in Anhui and evaluate the effectiveness of community quarantine based on trauma center (TC) patients. Method: The structure of community quarantine strategy was illustrated. Distribution of injuries among patients in two TCs between January 24, 2020 and February 24, 2020 was described. Multiple linear regression was used to analyze the correlation between the distribution of Injuries in TCs and the number of COVID-19-associated cases. Results: A total of 757 TC patients in the two hospitals were enrolled. The number of traffic injuries and outdoor injuries showed a significant decrease in the early stage and began to increase on February 17. The number of indoor injuries neither decreased nor increased. Multiple linear regression analysis revealed a significant correlation between COVID-19-associated cases and traffic and outdoor injuries. Conclusion: From the perspective of the injuries in TCs, community quarantine strategy was effectively implemented and significantly slowed the outbreak of COVID-19 in Anhui. However, the implementation and maintenance of the strategy is costly and requires the participation of the entire population.
BackgroundHeterotopic ossification (HO), either acquired (aHO) or hereditary, such as fibrodysplasia ossificans progressiva (FOP), is a serious condition without effective treatment. Understanding of the core process of injury-induced HO is still severely limited.MethodsDouble-pulse thymidine analog labeling was used to explore the distinctive domains evolved in injury-induced lesions in an animal model of HO (Nse-BMP4). Histological studies were performed to see whether a similar zonal pattern is also consistently found in biopsies from patients with aHO and FOP. In vivo clonal analysis with Rainbow mice, genetic loss-of-function studies with diphtheria toxin A (DTA)-mediated depletion and lineage tracing with Zsgreen reporter mice were used to obtain further evidence that Tie2-cre-, Gli1-creERT-, and Glast-creERT-labeled cells contribute to HO as niche-dwelling progenitor/stem cells. Immunohistochemistry was used to test whether vasculature, neurites, macrophages, and mast cells are closely associated with the proposed niche and thus are possible candidate niche supportive cells. Similar methods also were employed to further understand the signaling pathways that regulate the niche and the resultant HO.ResultsWe found that distinctive domains evolved in injury-induced lesions, including, from outside-in, a mesenchymal stem cell (MSC) niche, a transient domain and an inner differentiated core in an animal model of HO (Nse-BMP4). A similar zonal structure was found in patients with aHO and FOP. In vivo clonal analysis with Rainbow mice and genetic loss-of-function studies with DTA provided evidence that Tie2-cre-, Gli1-creERT-, and Glast-creERT-labeled cells contribute to HO as niche-dwelling progenitor/stem cells; consistently, vasculature, neurites, macrophages, and mast cells are closely associated with the proposed niche and thus are possible candidate niche supportive cells. Further mechanistic study found that BMP and hedgehog (Hh) signaling co-regulate the niche and the resultant HO.ConclusionsAvailable data provide evidence of a potential core mechanism in which multiple disease-specific cellular and extracellular molecular elements form a unique local microenvironment, i.e., an injury-induced stem cell niche, which regulates the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs). The implication for HO is that therapeutic approaches must consider several different disease specific factors as parts of a functional unit, instead of treating one factor at a time.Electronic supplementary materialThe online version of this article (10.1186/s13287-018-1107-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.