Aiming to solve the problem of environmental information being difficult to characterize when an intelligent service is used, knowledge graphs are used to express environmental information when performing intelligent services. Here, we specially design a kind of knowledge graph for environment expression referred to as a robot knowledge graph (R-KG). The main work of a R-KG is to integrate the diverse semantic information in the environment and pay attention to the relationship at the instance level. Also, through the efficient knowledge organization of a R-KG, robots can fully understand the environment. The R-KG firstly integrates knowledge from different sources to form a unified and standardized representation of a knowledge graph. Then, the deep logical relationship hidden in the knowledge graph is explored. To this end, a knowledge reasoning model based on a Markov logic network is proposed to realize the self-developmental ability of the knowledge graph and to further enrich it. Finally, as the strength of environment expression directly affects the efficiency of robots performing services, in order to verify the efficiency of the R-KG, it is used here as the semantic map that can be directly used by a robot for performing intelligent services. The final results prove that the R-KG can effectively express environmental information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.