To date, three Streptococcus parasuis strains, BS26, BS27, and NN1, have been isolated from the blood cultures of patients with peritonitis, pneumonia, and arthritis, indicating that S. parasuis is an emerging threat to susceptible people. There is thus an urgent need to further evaluate the pathogenesis of S. parasuis clinical strains in order to design efficient anti-inflammatory strategies. Our previous study demonstrated the capacity of S. parasuis clinical strains to enter the central nervous system (CNS) of infected mice. However, the characteristics and inflammatory mechanism of CNS infections caused by S. parasuis are still non-available. In the present study, we investigated the proportion and time of two clinical S. parasuis strains NN1 and BS26 on infected mice that developed neurological symptoms. The characteristics of histopathological changes and the cerebral immune response in mice with neurological symptoms were analyzed. Furthermore, we evaluated the roles of microglia and astrocytes in the S. parasuis clinical strain-induced cerebral inflammation. Our data indicated that S. parasuis clinical strains possess a high potential to induce cerebral inflammation in susceptible people at the early phase of infection. Our study contributes to increasing the understanding of the pathogenicity of S. parasuis and the inflammatory mechanisms of the brain against infection caused by S. parasuis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.