Previous studies have shown that connexin (Cx) expression is considerably higher in the preglomerular compared to postglomerular vasculature and that these differences are accentuated during diabetes. Since nitric oxide (NO) has been reported to alter Cx expression in endothelial cells and muscle cells and NO bioavailability is altered in diabetes, we hypothesized that NO may be responsible for the changes during diabetes. Cx expression was studied using immunohistochemistry in mice in which eNOS expression was either upregulated (eNOS transgenic) or downregulated (eNOS knockout). Diabetes was induced intraperitoneally with a single dose of alloxan or multiple low doses of streptozotocin. Expression of Cx40 in smooth muscle cells of afferent arterioles was increased, while expression of Cx43 in endothelial cells of efferent arterioles was absent in eNOS transgenic mice, similar to the changes occurring in wild-type mice during diabetes. Expression of Cx40 and Cx43 in eNOS knockout mice was not different from control; however, induction of diabetes in eNOS knockout mice failed to produce any changes in Cx40 or Cx43 in either afferent or efferent arterioles. Immunohistochemistry showed that eNOS expression was increased in the endothelium of renal arterioles in wild-type diabetic and eNOS transgenic mice, but absent from arterioles of eNOS knockout mice. We conclude that changes occurring in Cx expression in afferent and efferent arterioles during diabetes may result from increased eNOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.