Asia differs substantially among and within its regions populated by diverse ethnic groups, which maintain their own respective cultures and dietary habits. To address the diversity in their gut microbiota, we characterized the bacterial community in fecal samples obtained from 303 school-age children living in urban or rural regions in five countries spanning temperate and tropical areas of Asia. The microbiota profiled for the 303 subjects were classified into two enterotype-like clusters, each driven by Prevotella (P-type) or Bifidobacterium/Bacteroides (BB-type), respectively. Majority in China, Japan and Taiwan harbored BB-type, whereas those from Indonesia and Khon Kaen in Thailand mainly harbored P-type. The P-type microbiota was characterized by a more conserved bacterial community sharing a greater number of type-specific phylotypes. Predictive metagenomics suggests higher and lower activity of carbohydrate digestion and bile acid biosynthesis, respectively, in P-type subjects, reflecting their high intake of diets rich in resistant starch. Random-forest analysis classified their fecal species community as mirroring location of resident country, suggesting eco-geographical factors shaping gut microbiota. In particular, children living in Japan harbored a less diversified microbiota with high abundance of Bifidobacterium and less number of potentially pathogenic bacteria, which may reflect their living environment and unique diet.
Rationale
Transplantation of stem cells into damaged hearts has had modest success as a treatment for ischemic heart disease. One of the limitations is the poor stem cell survival in the diseased microenvironment. Prolyl hydroxylase domain protein 2 (PHD2) is a cellular oxygen sensor that regulates two key transcription factors involved in cell survival and inflammation, hypoxia-inducible factor (HIF) and nuclear factor-κB (NF-κB).
Objective
We studied if and how PHD2 silencing in human adipose-derived stem cells (ADSCs) enhances their cardioprotective effects after transplantation into infarcted hearts.
Methods and Results
ADSCs were transduced with lentiviral shPHD2 to silence PHD2. ADSCs with or without shPHD2 were transplanted after myocardial infarction (MI) in mice. ADSCs reduced cardiomyocyte apoptosis, fibrosis and infarct size and improved cardiac function. shPHD2-ADSCs exerted significantly more protection. PHD2 silencing induced greater ADSCs survival, which was abolished by shHIF-1α. Conditioned medium (CM) from shPHD2-ADSCs decreased cardiomyocyte apoptosis. Insulin-like growth factor 1 (IGF-1) levels were significantly higher in the CM of shPHD2-ADSCs versus ADSCs, and depletion of IGF-1 attenuated the cardioprotective effects of shPHD2-ADSCs-CM. NF-κB activation was induced by shPHD2 to induce IGF-1 secretion via binding to IGF-1 gene promoter.
Conclusions
PHD2 silencing promotes ADSCs survival in MI hearts and enhances their paracrine function to protect cardiomyocytes. The pro-survival effect of shPHD2 on ADSCs is HIF-1α dependent and the enhanced paracrine function of shPHD2-ADSCs is associated with NF-κB-mediated IGF-1 up-regulation. PHD2 silencing in stem cells may be a novel strategy for enhancing the effectiveness of stem cell therapy after MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.