Heterointerfaces not only provide more sites for lithium ions storage, but also reduce the damage of electrode active materials, which are conducive to boosting the capacity and cycle stability of...
Based on the synergistic effect of ripening and hydrogen ion etching in a hydrothermal solution, a simple, facile, and low-cost new strategy was demonstrated to prepare multi-channel surface-modified amorphous Fe2O3 nanospheres as anodes for Li-ion batteries in this study. Compared with polycrystalline Fe2O3, the conversion reaction between amorphous Fe2O3 and lithium ions has a lower Gibbs free energy change and a stronger reversibility, which can contribute to an elevation in the cycle capability of the electrode. Meanwhile, there are abundant active sites and more effective dangling bonds/defects in amorphous materials, which is beneficial to promote charge transfer and lithium-ion migration kinetics. The Galvanostatic intermittent titration analysis results confirmed that the amorphous Fe2O3 electrode had a higher Li+ diffusion coefficient. In addition, the surfaces of the amorphous nanospheres are corroded to produce multiple criss-cross channels. The multi-channel surface structure can not only increase the contact area between Fe2O3 nanospheres and electrolyte, but also reserve space for volume expansion, thereby effectively alleviating the volume change during the intercalation-deintercalation of lithium ions. The electrochemical performance showed that the multi-channel surface-modified amorphous Fe2O3 electrode exhibited a higher specific capacity, a more stable cycle performance, and a narrower voltage hysteresis. It is believed that amorphous metal oxides have great potential as high-performance anodes of next-generation lithium-ion batteries.
The application of iron oxide as anode of lithium-ion batteries is hindered by its poor cycle stability, low rate performance and large voltage hysteresis. To address these problems, multi-channel surface modified amorphous Fe2O3 nanospheres were synthesized by using a facile hydrothermal method, which exhibited outstanding electrochemical performances. According to crystalline state and microstructure, it was found that surface structure of the amorphous Fe2O3 nanospheres can be controlled by adjusting the reaction time, due to the synergistic effect of ripening and hydrogen ion etching. Owing to the isotropic nature and the absence of grain boundaries, the amorphous Fe2O3 nanospheres could withstand high strains during the intercalation of lithium ions. Meanwhile, the multi-channel surface structure can not only increase the contact area between Fe2O3 nanospheres and electrolyte, but also reserve space for volume expansion after lithium storage, thereby effectively alleviating the volume change during the intercalation-deintercalation of lithium ions. As confirmed by the Galvanostatic intermittent titration analysis results, the amorphous Fe2O3 electrode had higher Li+ diffusion coefficient than the crystalline counterpart. As a result, the multi-channel surface modified amorphous Fe2O3 electrode exhibited higher specific capacity, more stable cycle performance and narrower voltage hysteresis. It is believed that amorphous metal oxides have great potential as high-performance anode of next-generation lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.