Back analysis for seepage parameters is a classic issue in hydraulic engineering seepage calculations. Considering the characteristics of inversion problems, including high dimensionality, numerous local optimal values, poor convergence performance, and excessive calculation time, a biological immune mechanism-based quantum particle swarm optimization (IQPSO) algorithm was proposed to solve the inversion problem. By introducing a concentration regulation strategy to improve the population diversity and a vaccination strategy to accelerate the convergence rate, the modified algorithm overcame the shortcomings of traditional PSO which can easily fall into a local optimum. Furthermore, a simple multicore parallel computation strategy was applied to reduce computation time. The effectiveness and practicability of IQPSO were evaluated by numerical experiments. In this paper, taking one concrete face rock-fill dam (CFRD) as a case, a back analysis for seepage parameters was accomplished by utilizing the proposed optimization algorithm and the steady seepage field of the dam was analysed by the finite element method (FEM). Compared with immune PSO and quantum PSO, the proposed algorithm had better global search ability, convergence performance, and calculation rate. The optimized back analysis could obtain the permeability coefficient of CFRD with high accuracy.
During the long-term service life of hydraulic structures, the calcium compounds in cement-based materials decompose in the aqueous environment, leading to the continuous change of seepage characteristics. To study the influence of calcium leaching on the concrete dam seepage characteristics, we proposed a new mathematic model of the cement-based material calcium leaching model under advection-diffusion-driven leaching. A solid-liquid nonequilibrium model is adopted to model the decomposition of calcium hydroxide (CH) and calcium silicate hydrate gel (C-S-H). To calculate the porosity more accurately, the proposed model takes the effect of different calcium compound decomposition on the porosity increase in consideration, respectively. Shimantan dam is selected for the three-dimensional (3D) calcium leaching analyses. The 3D finite element model of this dam is analyzed using COMSOL Multiphysics software that is based on the finite element method. Based on the proposed model, seepage characteristics evolutions of the Shimantan dam are studied. Good agreement between the numerical results and the monitored data indicates the accuracy of this simulation. The result shows that after 100 a leaching duration, the uplift pressure increases by 40.8%, and the leakage quantities of the dam body and foundation increase by 48 and 17 times. The rise of uplift pressure and leakage changes caused by curtain deterioration are the main influences of calcium leaching on the dam seepage. The parameter sensitivity results show that it is necessary to reduce CH content in cement-based materials to obtain better calcium leaching durability. This model and simulation results can guide the operation of concrete dams under advection-diffusion-driven leaching.
Seepage is a main cause of dam failure, and its stability analysis is the focus of a dam’s design, construction, and management. Because a geological survey can only determine the range of a dam foundation’s hydraulic conductivity, hydraulic conductivity inversion is crucial in engineering. However, current inversion methods of dam hydraulic conductivity are either not accurate enough or too complex to be directly used in engineering. Therefore, this paper proposes a new method for the inversion of hydraulic conductivity with high application value in hydraulic engineering using an improved genetic algorithm coupled with an unsaturated equivalent continuum model (IGA–UECM). This method is implemented by a new code that fully considers engineering applicability. In addition to overcoming the premature convergence shortcomings of traditional genetic algorithms, it converges faster than Bayesian optimization and tree-structured Parzen estimator inversion algorithms. This method is verified by comparing the water head from drilling exploration and inversion. The results of the inversion are used to study the influence of a cement grouting curtain layout scheme on the seepage field of the Hami concrete-face rockfill dam in China, which is used as an engineering application case of the IGA–UECM. The law of the seepage field is reasonable, which verifies the validity of the IGA–UECM. The new inversion method of hydraulic conductivity and the proposed cement grouting curtain layout in this study offer possible strategies for the design, construction, and management of concrete-face rockfill dams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.