The recently proposed digital reconfigurable metasurfaces make it possible to manipulate electromagnetic (EM) waves flexibly. However, most existing reconfigurable metasurfaces can only exhibit a relatively single performance in the spatial domain. Here, we propose a general frequency- and spatial-domain reconfigurable metasurface (FSRM) that can manipulate the EM waves and realize reconfigurable functions in multifrequency bands. In the frequency domain, FSRM can convert different linearly polarized (LP) incident waves into left- and right-hand circularly polarized reflected waves, in which PIN diodes are used to switch the polarization conversions in different frequency bands. When the polarization direction of the incident LP wave is 45° from the +x-axis, the FSRM modulates the incident waves as a 1-bit programmable metasurface in the spatial domain. Two-dimensional beam scanning, vortex beams with orbital angular momentums, and specific beams with desired transmission directions are demonstrated via real-time adjustment of the digital coding state. To validate the modulation methodology, an FSRM prototype is fabricated and measured, which could respond to different functions for different polarization incidences. The measured results agree well with the theoretical analyses. The proposed FSRM will provide new opportunities for smart material designs.
Based on the 3D unsteady incompressible Navier-Stokes equation and the turbulent model ofk-εtwo equations, the processes of electric multiple units CRH380B passing by sound barriers installed on viaducts at the speed of 350 km/h were numerically simulated by finite volume method. The aerodynamic impulse pressure on sound barriers was analyzed. The distribution of impulse pressure on perforated sound barriers was compared with that on those with no holes. Effects of the shape, the size, the density, and tilt angle of the holes on deloading properties of perforated sound barriers were investigated. The numerical results show that the deloading properties of perforated sound barriers with circular holes are similar to those with square holes. The holistic distribution of impulse pressure on perforated sound barriers is similar to those with no holes. The density increases in two different directions has almost the same influence on the deloading properties. Deloading properties of perforated sound barriers become worse when tilt angle of holes increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.