The degree of flooding commonly used to induce disease in Phytophthora root rot studies rarely occurs in container nurseries. Instead, over-irrigation and poor drainage result in plants periodically sitting in shallow pools of water. Rhododendron plants were grown in a noninfested substrate or substrate infested with Phytophthora cinnamomi or P. plurivora to determine whether root rot induced by flooding represents disease that occurs under simulated nursery conditions when plants are in a shallow pool of water (saucers) or are allowed to freely drain and maintained at ~ 75% container capacity (75% CC). Generally, P. cinnamomi caused more disease than P. plurivora and all water treatments were conducive to root rot. In experiment 1, the amount of disease due to flooding was similar to that in the saucer treatment (75% CC not tested) while in experiment 2, flooding often caused more rapid and severe disease than the saucer or 75% CC treatment. Pathogens differed in their response to water treatments. P. cinnamomi caused more disease in treatments with >90% substrate moisture for either a short (flood) or long duration (saucer), while P. plurivora was less capable of causing disease when soil moisture was maintained >90% than when substrate moisture was maintained at a more moderate level (flood, 75% CC). Our results indicate that it is not necessary to flood plants to induce disease under experimental conditions and that disease induced by flooding can represent disease in container nurseries when containers are in pools of water or maintained at ~75% CC. In addition, our results suggest that P. cinnamomi is a more aggressive pathogen than P. plurivora in nursery conditions where drainage is poor; however, both species are capable of causing a similar amount of disease under more typical irrigation management.
Temperature is an important environmental variable affecting Phytophthora species biology. It alters the ability of species to grow, sporulate, and infect their plant host, and it is also important in mediating pathogen responses to disease control measures. Average global temperatures are increasing as a consequence of climate change. Yet, there are few studies that compare the effects of temperature on Phytophthora species that are important to the nursery industry. To address this, we conducted a series of experiments to evaluate how temperature affects the biology and control of three soilborne Phytophthora species prevalent in the nursery industry. In the first set of experiments, we evaluated the mycelial growth and sporulation of several P. cinnamomi, P. plurivora, and P. pini isolates at temperatures ranging from 4 to 42°C for different amounts of time (0-120 h). In the second set of experiments, we evaluated the response of three isolates of each species to the fungicides mefenoxam and phosphorous acid at temperatures ranging from 6 to 40°C. Results showed that each species responds differently to temperature, with P. plurivora having the greatest optimal temperature (26.6°C), P. pini the least (24.4°C), and P. cinnamomi between the two (25.3°C). P. plurivora and P. pini had the lowest minimum temperatures (~2.4°C) compared to P. cinnamomi (6.5°C), while all three species had a similar maximum temperature (~35°C). When tested against mefenoxam, all three species were generally more sensitive to mefenoxam at cool temperatures (6-14°C) than at warmer temperatures (22-30°C). P. cinnamomi was also more sensitive to phosphorous acid at cool temperatures 6-14°C. However, both P. plurivora and P. pini tended to be more sensitive to phosphorous acid at warmer temperatures (22-30°C). These findings help define the temperatures at which these pathogens will be the most damaging and help delineate the temperatures at which fungicides should be applied for maximum efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.