Split inteins have been used as a versatile tool in protein engineering to mediate efficient in vivo and in vitro trans-splicing of a protein. The trans-splicing ability of split inteins was also applied to the in vivo cyclization of a protein. However, cyclization efficiency is dependent upon the type of split inteins employed and the conditions under which cyclization occur. In this study, a novel reporter system that easily measures the cyclization efficiency of split inteins was developed. For this purpose TEM-1 beta-lactamase was divided into two fragments (24-215 and 216-286 amino acids) and circularly permuted. The circularly permuted beta-lactamase expressed in Escherichia coli showed little beta-lactamase activity, most likely due to the structural modification of the protein. However, when the circularly permuted beta-lactamase was cyclized by the Synechocystis sp. PCC6803 DnaB split mini-intein, beta-lactamase activity both in vitro and in vivo was recovered. These results suggest that the novel reporter system can be exploited to develop new inteins with high efficiency of in vivo protein cyclization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.