The rapid development of three-dimensional (3D) culture systems and engineered cell-based tissue models gave rise to an increasing need of new techniques, allowing the microscopic observation of cell behavior/morphology in tissue-like structures, as clearly signalled by several authors during the last decennium. With samples consisting of small aggregates of isolated cells grown in suspension, it is often difficult to produce an optimal embedded preparation that can be further successfully processed for classical histochemical investigations. In this work, we describe a new, easy to use, efficient method that enables to embed an enriched "preparation" of isolated cells/small 3D cell aggregates, without any cell stress or damage. As for after tissue-embedding procedures, the cellular blocks can be further suitably processed for efficient histochemical as well as immunohistochemical analyses, rendering more informative-and attractive-studies onto 3D cell-based culture of neo-tissues.
3D-dynamic culture models represent an invaluable tool for a better comprehension of tumor biology and drug response, as they accurately re-create/preserve the complex multicellular organization and the dynamic interactions of the parental microenvironment, which can affect tumor fate and drug sensitivity. Hence, development of models that recapitulate tumor within its embedding microenvironment is an imperative need. This is particularly true for multiple myeloma (MM), which survives almost exclusively in the bone marrow (BM). To meet this need, we have previously exploited and validated an innovative 3D-dynamic culture technology, based on the use of the Rotary Cell Culture System (RCCS ™) bioreactor . Here, we describe, step by step, the procedures we have employed to establish two human MM ex vivo models, i.e., the culture of human BM-derived isolated cells and of MM tissues from patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.