Diarrhea, the second leading cause of child morbidity and mortality, can have detrimental effects in the physical and cognitive development of children in developing countries. Health interventions (e.g., increased access to health services and safe water) designed to address this problem are difficult to implement in resource-limited settings. In this paper, we present a tool for understanding the complex relationship between water and public health in rural areas of a developing country. A spatial and temporal agent-based model (ABM) was developed to simulate the current water, sanitation, and health status in two villages in Limpopo Province, South Africa. The model was calibrated using empirical data and published sources. It was used to simulate the effects of poor water quality on the frequency of diarrheal episodes in children, and consequently on child development. Preliminary simulation results show that at the current total coliform levels in the water sources of the studied villages, children are expected to experience stunting by as much as −1.0 standard deviations from the World Health Organization height norms. With minor modifications, the calibrated ABM can be used to design and evaluate intervention strategies for improving child health in these villages. The model can also be applied to other regions worldwide that face the same environmental challenges and conditions as the studied villages.
The United States military uses Joint Logistics Over-the-Shore (JLOTS) operations to move soldiers, vehicles, and equipment across the globe for military and humanitarian missions. These logistics operations can only be accomplished through cooperation between commanders in all services. The U.S. Army Engineer Research and Development Center is developing a tool to analyze a set of early entry alternatives to optimize mission effectives and efficiencies in order to facilitate assured mobility and freedom of movement. This program is currently being developed under the name Planning Logistics Analysis Network System (PLANS). PLANS comprehensively covers air, land, and sea transportation infrastructure, regions of avoidance, and more. This research addresses a gap in strategic and operational planning by modeling the establishment of JLOTS operations on bare beach environments. The West Point developed discrete event simulation will determine the amount of time it takes to prepare a beach to sustain JLOTS operations under varying environmental and operational conditions.
To maintain the United States military’s capability to deploy rapidly across the globe, logistical planning tools, simulations, and models enhance leaders’ decision making abilities. This research develops a discrete event model designed to simulate military operations within a railyard in order to support the Engineer Research and Development Center’s (ERDC) Planning Logistics Analysis Network System (PLANS). The research team chose the Port of Bremerhaven, Germany as a case study due to its relevance to current military operations, granting us access to timely data and stakeholders with recent operational experience. The discrete event simulation (DES) utilizes stochastic processes and multiple layouts in order to analyze the amount of time it takes to move varying amounts of cargo and vehicles and identify potential bottlenecks in the operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.