This paper presents an improved numerical strategy for the broadband analysis of wave propagation in composite or complex cross-sectional waveguides using the wave finite element method (WFE). Numerical analysis of such structures require highly discretized finite element models and leads to extensive computations. The proposed formulation relies on a projection of the cross-sectional transfer matrices on a reduced set of shape functions associated to propagating waves. Dispersion curves are then predicted only using a reduced number of eigenvectors. The performances and stability of this method are evaluated using the wavenumbers and wave shapes. Validations are provided for a sandwich composite beam and a cylindrical elasto-acoustic waveguide.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The optimization of wiper systems under various conditions and the creation of a product which is as robust as possible are the main objectives for an equipment supplier. However, in certain conditions, instabilities can appear and generate wiping defects due to the rubber-glass contact. To improve wiping quality and to reduce the number of test stages for design, this study proposes a wiper system modeling method. The wiper system is represented by a rigid blade holder on which a rubber blade is fitted. This rigid blade system is used on a flat test bench at constant wiping velocity. The model is based on modal synthesis methods and will be validated through comparison with experimental tests under various conditions. The right correlation obtained allows the same modelling method to be applied to the new generation of flexible wiper blades which take account of the degree of freedom of the wiper blade flexions. So, a new computation tool will be developed and validated through experimentation on a specific test bench.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.