Following Bali and Weinbaum (2005) and Maillet et al. (2010), we present several estimates of volatilities computed with high-and low-frequency data and complement their results using additional measures of risk and several alternative methods for Tail-index estimation. The aim here is to confirm previous results regarding the slope of the tail of various risk measure distributions, in order to define the high watermarks of market risks. We also produce synthetic general results concerning the method of estimation of the Tail-indexes related to expressions of the L-moments. Based on estimates of Tail-indexes, retrieved from the high frequency 30' sampled CAC40 French stock Index series from the period 1997-2009, using Non-parametric Generalized Hill, Maximum Likelihood and various kinds of L-moment Methods for the estimation of both a Generalized Extreme Value density and a Generalized Pareto Distribution, we confirm that a heavy-tail density specification of the Log-volatility is not necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.