In Escherichia coli, chromosome dimers are generated by recombination between circular sister chromosomes. Dimers are lethal unless resolved by a system that involves the XerC, XerD and FtsK proteins acting at a site (dif) in the terminus region. Resolution fails if dif is moved from its normal position. To analyse this positional requirement, dif was transplaced to a variety of positions, and deletions and inversions of portions of the dif region were constructed. Resolution occurs only when dif is located at the convergence of multiple, oppositely polarized DNA sequence elements, inferred to lie in the terminus region. These polar elements may position dif at the cell septum and be general features of chromosome organization with a role in nucleoid dynamics.
Plasmid pSC101 harbors a 28-bp sequence which is homologous to dif, the target site of the XerC/XerDdependent recombination system in Escherichia coli. Using a technique which allows very sensitive detection of plasmid loss, we show that recombination at this site, termed psi for pSC101 stabilized inheritance, causes a moderate increase in pSC101 stability. The role of the psi sequence in site-specific recombination has been explored in two other contexts. It was cloned in a derivative of plasmid pl5A and inserted into the chromosome in place of dif. In the first situation, psi activity requires accessory sequences and results in multimer resolution; in the second situation, it suppresses the effects of the dif deletion and can promote intermolecular exchanges. Thus, psi is a site whose recombinational activity depends on the context, the first in the ceridif famil known to exhibit such flexibility.
The recombination site dif is the target on the Escherichia coli chromosome of the site-specific recombinases XerC and XerD. The dif/XerC-D system plays a role during the cell cycle, probably by favoring sister chromosome monomerization or separation. A phenomenon of regional control over dif activity, also analyzed in this issue, is demonstrated here by translocation of dif to a series of loci close to the normal locus. We found that the site is physiologically active only within a narrow zone around its natural position.Competence for dif activity does not depend on the sequence of the normal dif activity zone (DAZ), because ~(diD deletions larger than the DAZ result in Dif + bacteria when dif is reinserted at the junction point. Although dif maps where replication normally terminates, termination of replication is not the elicitor. A strain with a large inversion that places dif and its surrounding region close to oriC remains Dif*, even when a Tus-mutation allows replication to terminate far away from it. Preliminary data suggest the possibility that specialized sequences separate the competent zone from the rest of the chromosome. We suspect that these sequences are members of a set of sequences involved in a polarized process of postreplicative reconstruction of the nucleoid structure. We propose that this reconstruction forces catenation links between sister chromosomes to accumulate within the DAZ, where they eventually favor recombination at d/f.[Key Words." Site-specific recombination; dif site domain of activity; E. coli chromosome organization] Received January 10, 1996; revised version accepted March 20, 1996.The
A lambda hybrid phage (lambda Sda1), containing an 8.1 kb EcoRI DNA fragment from the Escherichia coli chromosome, was selected on the basis of its ability to suppress bacterial thermosensitivity caused by the dnaA46 mutation. We have shown that this suppression is due to a recA+-dependent amplification of the 8.1 kb fragment; consistent with this observation, cloning of the 8.1 kb fragment into a high copy number plasmid (pBR325) leads also to suppression of dnaA46. In the suppressed strains growing at high temperature, bidirectional replication starts in or near the oriC region and requires the presence of the DnaA polypeptide. These findings suggest that the overproduction of a gene product(s), encoded by the cloned 8.1 kb fragment, can restore dnaA-dependent initiation of replication at high temperature in the oriC region. Genetic mapping shows that the groES (mopB) and groEL (mopA) genes are located on the 8.1 kb suppressor fragment. Further analysis, including in vitro mutagenesis and subcloning, demonstrates that the amplification of the groES and groEL genes is both necessary and sufficient to suppress the temperature sensitive phenotype of the dnaA46 mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.