The corn earworm, Helicoverpa zea (Boddie), is a major pest of Bacillus thuringiensis (Bt) maize and cotton in the U.S.. Reduced efficacy of Bt plants expressing Cry1 and Cry2 against H. zea has been reported in some areas of the U.S.. In this study, we evaluated the occurrence and ear damage of H. zea on transgenic Bt maize expressing Cry proteins or a combination of Vip3A and Cry proteins in the field in Texas in 2018. We found that the occurrence of H. zea larvae and the viable kernel damage area on the ear were not different between non-Bt maize and Bt maize expressing Cry1A.105+Cry2Ab2 and Cry1Ab+Cry1F proteins. A total of 67.5% of the pyramided Bt maize expressing Cry1Ab+Cry1F+Vip3A was damaged by 2nd–4th instar larvae of H. zea. Diet bioassays showed that the resistance ratio against Vip3Aa51 for H. zea obtained from Cry1Ab+Cry1F+Vip3A maize was 20.4 compared to a field population collected from Cry1F+Cry1A.105+Cry2Ab2 maize. Leaf tissue bioassays showed that 7-day survivorship on WideStrike3 (Cry1F+Cry1Ac+Vip3A) cotton leaves was significantly higher for the H. zea population collected from Cry1Ab+Cry1F+Vip3A maize than for a Bt-susceptible laboratory population. The results generated from this study suggest that H. zea has evolved practical resistance to Cry1 and Cry2 proteins. Therefore, it is crucial to ensure the sustainable use of the Vip3A technology in Bt maize and cotton.
A modified Vip3C protein has been developed that has a spectrum of activity that has the potential to be commercially useful for pest control, and shows good efficacy against Spodoptera frugiperda in insect bioassays and field trials. For the first time Vip3A and Vip3C proteins have been compared to Cry1 and Cry2 proteins in a complete set of experiments from insect bioassays to competition binding assays to field trials, and the results of these complementary experiments are in agreement with each other. Binding assays with radiolabelled toxins and brush border membrane vesicles from S. frugiperda and Helicoverpa armigera show that the modified Vip3C protein shares binding sites with Vip3A, and does not share sites with Cry1F or Cry2A. In agreement with the resulting binding site model, Vip3A-resistant insects were also cross-resistant to the modified Vip3C protein. Furthermore, maize plants expressing the modified Vip3C protein, but not those expressing Cry1F protein, were protected against Cry1F-resistant S. frugiperda in field trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.