SUMMARY1. Metacommunity ecology addresses the situation where sets of local communities are connected by the dispersal of a number of potentially interacting species. Aquatic systems (e.g. lentic versus lotic versus marine) differ from each other in connectivity and environmental heterogeneity, suggesting that metacommunity organisation also differs between major aquatic systems. Here, we review findings from observational field studies on metacommunity organisation in aquatic systems. 2. Species sorting (i.e. species are 'filtered' by environmental factors and occur only at environmentally suitable sites) prevails in aquatic systems, particularly in streams and lakes, but the degree to which dispersal limitation interacts with such environmental control varies among different systems and spatial scales. For example, mainstem rivers and marine coastal systems may be strongly affected by 'mass effects' (i.e. where high dispersal rates homogenise communities to some degree at neighbouring localities, irrespective of their abiotic and biotic environmental conditions), whereas isolated lakes and ponds may be structured by dispersal limitation (i.e. some species do not occur at otherwise-suitable localities simply because sites with potential colonists are too far away). Flow directionality in running waters also differs from water movements in other systems, and this difference may also have effects on the role of dispersal in different aquatic systems. 3. Dispersal limitation typically increases with increasing spatial distance between sites, mass effects potentially increase in importance with decreasing distance between sites, and the dispersal ability of organisms may determine the spatial extents at which species sorting and dispersal processes are most important. 4. A better understanding of the relative roles of species sorting, mass effects and dispersal limitation in affecting aquatic metacommunities requires the following: (i) characterising dispersal rates more directly or adopting better proxies than have been used previously; (ii) considering the nature of aquatic networks; (iii) combining correlative and experimental approaches; (iv) exploring temporal aspects of metacommunity organisation and (v) applying past approaches and statistical methods innovatively for increasing our understanding of metacommunity organisation.
Current rates of climate change are unprecedented, and biological responses to these changes have also been rapid at the levels of ecosystems, communities, and species. Most research on climate change effects on biodiversity has concentrated on the terrestrial realm, and considerable changes in terrestrial biodiversity and species' distributions have already been detected in response to climate change. The studies that have considered organisms in the freshwater realm have also shown that freshwater biodiversity is highly vulnerable to climate change, with extinction rates and extirpations of freshwater species matching or exceeding those suggested for better-known terrestrial taxa. There is some evidence that freshwater species have exhibited range shifts in response to climate change in the last millennia, centuries, and decades. However, the effects are typically species-specific, with cold-water organisms being generally negatively affected and warm-water organisms positively affected. However, detected range shifts are based on findings from a relatively low number of taxonomic groups, samples from few freshwater ecosystems, and few regions. The lack of a wider knowledge hinders predictions of the responses of much of freshwater biodiversity to climate change and other major anthropogenic stressors. Due to the lack of detailed distributional information for most freshwater taxonomic groups and the absence of distribution-climate models, future studies should aim at furthering our knowledge about these aspects of the ecology of freshwater organisms. Such information is not only important with regard to the basic ecological issue of predicting the responses of freshwater species to climate variables, but also when assessing the applied issue of the capacity of protected areas to accommodate future changes in the distributions of freshwater species. This is a huge challenge, because most current protected areas have not been delineated based on the requirements of freshwater organisms. Thus, the requirements of freshwater organisms should be taken into account in the future delineation of protected areas and in the estimation of the degree to which protected areas accommodate freshwater biodiversity in the changing climate and associated environmental changes.
SUMMARY1. The aim of this paper is to review literature on species diversity patterns of freshwater organisms and underlying mechanisms at large spatial scales. 2. Some freshwater taxa (e.g. dragonflies, fish and frogs) follow the classical latitudinal decline in regional species richness (RSR), supporting the patterns found for major terrestrial and marine organism groups. However, the mechanisms causing this cline in most freshwater taxa are inadequately understood, although research on fish suggests that energy and history are major factors underlying the patterns in total species and endemic species richness. Recent research also suggests that not all freshwater taxa comply with the decline of species richness with latitude (e.g. stoneflies, caddisflies and salamanders), but many taxa show more complex geographical patterns in across-regions analyses. These complexities are even more profound when studies of global, continental and regional extents are compared. For example, clear latitudinal gradients may be present in regional studies but absent in global studies (e.g. macrophytes). 3. Latitudinal gradients are often especially weak in the across-ecosystems analyses, which may be attributed to local factors overriding the effects of large-scale factors on local communities. Nevertheless, local species richness (LSR) is typically linearly related to RSR (suggesting regional effects on local diversity), although saturating relationships have also been found in some occasions (suggesting strong local effects on diversity). Nestedness has often been found to be significant in freshwater studies, yet this pattern is highly variable and generally weak, suggesting also a strong beta diversity component in freshwater systems. 4. Both geographical location and local environmental factors contribute to variation in alpha diversity, nestedness and beta diversity in the freshwater realm, although the relative importance of these two groups of explanatory variables may be contingent on the spatial extent of the study. The mechanisms associated with spatial and environmental control of community structure have also been inferred in a number of studies, and most support has been found for species sorting (possibly because many freshwater studies have species sorting as their starting point), although also dispersal limitation and mass effects may be contributing to the patterns found. 5. The lack of latitudinal gradients in some freshwater taxa begs for further explanations. Such explanations may not be gained for most freshwater taxa in the near future, however, because we lack species-level information, floristic and faunistic knowledge, and standardised surveys along extensive latitudinal gradients. A challenge for macroecology Correspondence: Jani Heino, Ecosystem Change Unit, Natural Environment Centre, Finnish Environment Institute, P.O. Box 413, Oulu, Finland. E-mail: jani.heino@ymparisto.fi Freshwater Biology (2011) 56, 1703-1722 doi:10.1111/j.1365-2427.2011.02610.x Ó 2011 Blackwell Publishing Ltd 1703 is ...
Aim: The number of studies investigating the nestedness and turnover components of beta diversity has increased substantially, but our general understanding of the drivers of turnover and nestedness remains elusive. Here, we examined the effects of species traits, spatial extent, latitude and ecosystem type on the nestedness and turnover components of beta diversity. Location: Global.Time period: 1968-2017.Major taxa studied: From bacteria to mammals. Methods:From the 99 studies that partition total beta diversity into its turnover and nestedness components, we assembled 269 and 259 data points for the pairwise and multiple site betadiversity metrics, respectively. Our data covered a broad variation in species dispersal type, body size and trophic position. The data were from freshwater, marine and terrestrial realms, and encompassed geographical areas from the tropics to near polar regions. We used linear modelling as a meta-regression tool to analyse the data.Results: Pairwise turnover, multiple site turnover and total beta diversity all decreased significantly with latitude. In contrast, multiple site nestedness showed a positive relationship with latitude. Beta-diversity components did not generally differ among the realms. The turnover component and total beta diversity increased with spatial extent, whereas nestedness was scale invariant for pairwise metrics. Multiple site beta-diversity components did not vary with spatial extent. Surprisingly, passively dispersed organisms had lower turnover and total beta diversity than flying organisms. Body size showed a relatively weak relationship with beta diversity but had important interactions with trophic position, thus also affecting beta diversity via interactive effects. Producers had significantly higher average pairwise turnover and total beta diversity than carnivores. Main conclusions:The present results provide evidence that species turnover, being consistently the larger component of total beta diversity, and nestedness are related to the latitude of the study area and intrinsic organismal features. We showed that two beta-diversity components had generally opposing patterns with regard to latitude. We highlight that beta-diversity partition may give additional insights into the underlying causes of spatial variability in biotic communities compared with total beta diversity alone. K E Y W O R D Sbiodiversity, body size, dispersal, global, macroecology, meta-analysis, nestedness, turnover 96 |
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.
Abstract1. River networks are hierarchical dendritic habitats embedded within the terrestrial landscape, with varying connectivity between sites depending on their positions along the network. This physical organisation influences the dispersal of organisms, which ultimately affects metacommunity dynamics and biodiversity patterns.2. We provide a conceptual synthesis of the role of river networks in structuring metacommunities in relation to dispersal processes in riverine ecosystems. We explore where the river network best explains observed metacommunity structure compared to other measurements of physical connectivity. We mostly focus on invertebrates, but also consider other taxonomic groups, including microbes, fishes, plants, and amphibians.3. Synthesising studies that compared multiple spatial distance metrics, we found that the importance of the river network itself in explaining metacommunity patterns depended on a variety of factors, including dispersal mode (aquatic versus aerial versus terrestrial) and landscape type (arid versus mesic), as well as location-specific factors, such as network connectivity, land use, topographic heterogeneity, and biotic interactions. The river network appears to be less important for strong aerial dispersers and insects in arid systems than for other groups and biomes, but there is considerable variability. Borrowing from other literature, particularly landscape genetics, we developed a conceptual model that predicts that the explanatory power of the river network peaks in mesic systems for obligate aquatic dispersers. 4.We propose directions of future avenues of research, including the use of manipulative field and laboratory experiments that test metacommunity theory in river networks. While field and laboratory experiments have their own benefits and drawbacks (e.g. reality, control, cost), both are powerful approaches for understanding the mechanisms structuring metacommunities, by teasing apart dispersal and niche-related factors.5. Finally, improving our knowledge of dispersal in river networks will benefit from expanding the breadth of cost-distance modelling to better infer dispersal from observational data; an improved understanding of life-history strategies rather than relying on independent traits; exploring individual-level variation in dispersal through detailed genetic studies; detailed studies on fine-scale environmental
We studied the relative importance of spatial and environmental factors as determinants of algal, bryophyte, and macroinvertebrate metacommunities in two boreal drainage basins differing in spatial extent. We used eigenfunction spatial analysis to model the spatial relationships among sites and distance-based redundancy analysis to partition the variability in biotic communities between the spatial filters generated through spatial eigenfunction analysis and the environmental factors measured in the field. In the smaller study area, each metacommunity was structured mostly by environmental factors. This was evidenced by the fact that either the pure environmental effect was significant or environmental factors were strongly spatially structured. In the larger study area, only pure environmental effects were significant. These findings suggest that the environmental control prevails in boreal headwater streams. However, our findings also suggest that the specific details of the community-environment and community-space relationships are dependent on the focal organism group and drainage basin.
Summary1. Multiscale determinants of diversity and the relationship between regional (RSR) and local richness (LSR) have recently attracted increased attention, yet such studies on stream organisms remain scarce. We studied the relationships among RSR, β -diversity, LSR and local environmental variables in 120 headwater streams in Finland. Approximately similar-sized areas of eight drainage systems were defined as regions, and 15 stream riffles (= locality) per region were sampled. 2. RSR showed a strong positive relationship with mean LSR ( R 2 = 0·686), and there was no sign of curvilinearity within the observed range of RSR. RSR was also positively, although non-significantly, related to β -diversity ( r = 0·662). 3. In stepwise regression, RSR was the first variable to enter the model, and a model incorporating RSR and stream width explained 32·5% of variation in LSR. If RSR was omitted from the model, then stream width emerged as the most important variable, followed by water pH, which together accounted for 20·6% of variation in LSR. 4. At the within-region scale, different variables were important in accounting for variation in LSR. Factors correlated with LSR reflected either stream size, spatial heterogeneity, adverse water chemistry conditions (pH), or a limiting resource base for macroinvertebrates (nutrient concentrations). 5. The major role of RSR in setting the upper limit to LSR suggests that macroinvertebrate assemblages of boreal headwater streams are unsaturated. This finding is supported by evidence from experimental studies, where it has been shown that competitive interactions among stream macroinvertebrates are effective only at very small spatial scales, and competitive exclusion is prevented typically by frequent disturbances. However, although RSR was generally the most influential variable contributing to LSR, it is far from clear whether RSR consistently sets the limits to LSR, or vice versa. For instance, uniformly adverse water chemistry conditions across a region may lead to low levels of local richness and low species turnover among sites, leading eventually to an impoverished regional species pool. 6. These findings do not deny the importance of local factors, but emphasize that understanding the organization of stream benthic communities requires simultaneous examination of factors prevailing at multiple spatial scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.