Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs.
We have demonstrated that arginine-rich and poly-arginine peptides possess potent neuroprotective properties with arginine content and peptide positive charge being particularly critical for neuroprotective efficacy. In addition, the presence of other amino acids within arginine-rich peptides, as well as chemical modifications, peptide length and cell-penetrating properties also influence the level of neuroprotection. Against this background, we have examined the neuroprotective efficacy of arginine-rich protamine peptides, a cyclic (R12-c) poly-arginine peptide and a R22 poly-arginine peptide, as well as arginine peptides containing tryptophan or other amino acids (phenylalanine, tyrosine, glycine or leucine) in in vitro glutamic acid excitotoxicity and in vivo rat permanent middle cerebral artery occlusion models of stroke. In vitro studies demonstrated that protamine and poly-arginine peptides (R12-c, R22) were neuroprotective. Arginine-tryptophan-containing peptides were highly neuroprotective, with R12W8a being the most potent arginine-rich peptide identified in our laboratory. Peptides containing phenylalanine or tyrosine substituted in place of tryptophan in R12W8a were also highly neuroprotective, whereas leucine, and in particular glycine substitutions, decreased peptide efficacy. In vivo studies with protamine administered intravenously at 1000 nmol/kg 30 min after MCAO significantly reduced infarct volume and cerebral oedema by 22.5 and 38.6%, respectively. The R12W8a peptide was highly toxic when administered intravenously at 300 or 100 nmol/kg and ineffective at reducing infarct volume when administered at 30 nmol/kg 30 min after MCAO, unlike R18 (30 nmol/kg), which significantly reduced infarct volume by 20.4%. However, both R12W8a and R18 significantly reduced cerebral oedema by 19.8 and 42.2%, respectively. Protamine, R12W8a and R18 also reduced neuronal glutamic acid-induced calcium influx. These findings further highlight the neuroprotective properties of arginine-rich peptides and support the view that they represent a new class of neuroprotective agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.