In this study we performed a phylogenetic analysis of a culturable bacterial community isolated from heavymetal-contaminated soil from southwest Slovakia using 16S rRNA (16S rDNA) and heavy-metal resistance genes. The soil sample contained high concentrations of nickel (2,109 mg/kg), cobalt (355 mg/kg) and zinc (177 mg/kg), smaller concentrations of iron (35.75 mg/kg) and copper (32.2 mg/kg), and a trace amount of cadmium (<0.25 mg/kg). A total of 100 isolates were grown on rich (Nutrient agar No. 2) or minimal (soil-extract agar medium) medium. The isolates were identified by phylogenetic analysis using partial sequences of their 16S rRNA (16S rDNA) genes. Representatives of two broad taxonomic groups, Firmicutes and Proteobacteria, were found on rich medium, whereas four taxonomic groups, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, were represented on minimal medium. Forty-two isolates grown on rich medium were assigned to 20 bacterial species, while 58 bacteria grown on minimal medium belonged to 49 species. Twenty-three isolates carried czcA-and/or nccA-like heavy-metal-resistance determinants. The heavy-metalresistance genes of nine isolates were identified by phylogenetic analysis of their protein sequences.
In this study we performed the phylogenetic analysis of non-cultivable bacteria from anthropogenically disturbed soil using partial sequences of the 16S rRNA (16S rDNA) and the heavy-metal resistance genes. This soil sample contained high concentrations of nickel (2,109 mg/kg), cobalt (355 mg/kg) and zinc (177 mg/kg), smaller concentrations of iron (35.75 mg/kg) and copper (32.2 mg/kg), and also a trace amount of cadmium (<0.25 mg/kg). The 16S rDNA sequences from a total of 74 bacterial clones were distributed into four broad taxonomic groups, Acidobacteria, Actinobacteria, Bacteroidetes and Gemmatimonadetes, and some of them were unidentified. Comparing our clone sequences with those from the GenBank database, only 9 clones displayed high similarity to known bacteria belongig to actinomycetes; others were identified as uncultured ones. Among clones evidently Actinobacteria predominated. Sixteen clones from soil sample carried only the nccA-like heavy-metal-resistance genes and all sequences showed too low similarity to known proteins encoded by these genes. However, our results suggested that the heavy-metal-contaminated soil is able to present very important reservoir of the new and until now unknown partly bacteria, partly heavy-metal-resistance determinants and their products. Bacteria and nccA-like genes identified in this study could represent the objects of interest as bioremediation agents because they can be potentially used in different transformation and immobilization processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.