MHC class II (MHC-II) molecules play a central role in the selection of the T cell repertoire, in the establishment and regulation of the adaptive immune response, and in autoimmune deviation. We have generated knockout mice lacking all four of the classical murine MHC-II genes (MHCII ⌬͞⌬ mice), via a large (80-kilobase) deletion of the entire class II region that was engineered by homologous recombination and Cre recombinase-mediated excision. These mice feature immune system perturbations like those of A␣ and A knockout animals, notably a dearth of CD4 ؉ lymphocytes in the thymus and spleen. No new anatomical or physiological abnormalities were observed in MHCII ⌬͞⌬ mice. Because these animals are devoid of all classical MHC-II chains, even unpaired chains, they make excellent recipients for MHC-II transgenes from other species, avoiding the problem of interspecies cross-pairing of MHC-II chains. Therefore, they should be invaluable for engineering ''humanized'' mouse models of human MHC-II-associated autoimmune disorders.
Multiple sclerosis (MS) is a complex chronic neurologic disease with a suspected autoimmune pathogenesis. Although there is evidence that the development of MS is determined by both environmental influences and genes, these factors are largely undefined, except for major histocompatibility (MHC) genes. Linkage analyses and association studies have shown that susceptibility to MS is associated with genes in the human histocompatibility leukocyte antigens (HLA) class II region, but the contribution of these genes to MS disease development less compared with their contribution to disorders such as insulin-dependent diabetes mellitus. Due to the strong linkage disequilibrium in the MHC class II region, it has not been possible to determine which gene(s) is responsible for the genetic predisposition. In transgenic mice, we have expressed three human components involved in T-cell recognition of an MS-relevant autoantigen presented by the HLA-DR2 molecule: DRA*0101/DRB1*1501 (HLA-DR2), an MHC class II candidate MS susceptibility genes found in individuals of European descent; a T-cell receptor (TCR) from an MS-patient-derived T-cell clone specific for the HLA-DR2 bound immunodominant myelin basic protein (MBP) 4102 peptide; and the human CD4 coreceptor. The amino acid sequence of the MBP 84-102 peptide is the same in both human and mouse MBP. Following administration of the MBP peptide, together with adjuvant and pertussis toxin, transgenic mice developed focal CNS inflammation and demyelination that led to clinical manifestations and disease courses resembling those seen in MS. Spontaneous disease was observed in 4% of mice. When DR2 and TCR double-transgenic mice were backcrossed twice to Rag2 (for recombination-activating gene 2)-deficient mice, the incidence of spontaneous disease increased, demonstrating that T cells specific for the HLA-DR2 bound MBP peptide are sufficient and necessary for development of disease. Our study provides evidence that HLA-DR2 can mediate both induced and spontaneous disease resembling MS by presenting an MBP self-peptide to T cells.
Susceptibility to multiple sclerosis (MS) is associated with the human histocompatibility leukocyte antigen (HLA)-DR2 haplotype, suggesting that major histocompatibility complex class II–restricted presentation of central nervous system–derived antigens is important in the disease process. Antibodies specific for defined HLA-DR2–peptide complexes may therefore be valuable tools for studying antigen presentation in MS. We have used phage display technology to select HLA-DR2–peptide-specific antibodies from HLA-DR2–transgenic mice immunized with HLA-DR2 molecules complexed with an immunodominant myelin basic protein (MBP) peptide (residues 85–99). Detailed characterization of one clone (MK16) demonstrated that both DR2 and the MBP peptide were required for recognition. Furthermore, MK16 labeled intra- and extracellular HLA-DR2–MBP peptide complexes when antigen-presenting cells (APCs) were pulsed with recombinant MBP. In addition, MK16 inhibited interleukin 2 secretion by two transfectants that expressed human MBP–specific T cell receptors. Analysis of the structural requirement for MK16 binding demonstrated that the two major HLA-DR2 anchor residues of MBP 85–99 and the COOH-terminal part of the peptide, in particular residues Val-96, Pro-98, and Arg-99, were important for binding. Based on these results, the antibody was used to determine if the HLA-DR2–MBP peptide complex is presented in MS lesions. The antibody stained APCs in MS lesions, in particular microglia/macrophages but also in some cases hypertrophic astrocytes. Staining of APCs was only observed in MS cases with the HLA-DR2 haplotype but not in cases that carried other haplotypes. These results demonstrate that HLA-DR2 molecules in MS lesions present a myelin-derived self-peptide and suggest that microglia/macrophages rather than astrocytes are the predominant APCs in these lesions.
The complete primary structure (967 amino acids) of an intestinal human aminopeptidase N (EC 3.4.11.2) was deduced from the sequence of a cDNA clone. Aminopeptidase N is anchored to the microvillar membrane via an uncleaved signal for membrane insertion. A domain constituting amino acid 2X%555 positioned within the catalytic domain shows very clear homology to E. coli aminopcptidase N and contains Zn* + ligands. Therefore these residues are part of the active site. However, no homology of the anchor/junctional peptide domain is found suggesting that the juxta-and intramembraneous parts of the molecule have been added/preserve-d during development. It is speculated that this part carries the apical address.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.