50Publications

8,487Citation Statements Received

4,178Citation Statements Given

How they've been cited

5,880

291

8,185

11

How they cite others

2,039

235

3,935

8

Publications

Order By: Most citations

We construct the non-linear Kaluza-Klein ansätze describing the embeddings of the U (1) 3 , U (1) 4 and U (1) 2 truncations of D = 5, D = 4 and D = 7 gauged supergravities into the type IIB string and M-theory. These enable one to oxidise any associated lower dimensional solutions to D = 10 or D = 11. In particular, we use these general ansätze to embed the charged AdS 5 , AdS 4 and AdS 7 black hole solutions in ten and eleven dimensions.The charges for the black holes with toroidal horizons may be interpreted as the angular momenta of D3-branes, M2-branes and M5-branes spinning in the transverse dimensions, in their near-horizon decoupling limits. The horizons of the black holes coincide with the worldvolumes of the branes. The Kaluza-Klein ansätze also allow the black holes with spherical or hyperbolic horizons to be reinterpreted in D = 10 or D = 11. IntroductionAnti-de Sitter black hole solutions of gauged extended supergravities [1] are currently attracting a good deal of attention [2,3,4,5,6,7,8,9,10,11,12] due, in large part, to the correspondence between anti-de Sitter space and conformal field theories on its boundary [13,14,15,16]. These gauged extended supergravities can arise as the massless modes of various Kaluza-Klein compactifications of both D = 11 and D = 10 supergravities. The three examples studied in the paper will be gauged D = 4, N = 8 SO(8) supergravity [17, 18] arising from D = 11 supergravity on S 7 [19, 20] whose black hole solutions are discussed in [7]; gauged D = 5, N = 8 SO(6) supergravity [21, 22] arising from Type IIB supergravity on S 5 [23, 24, 25] whose black hole solutions are discussed in [2, 6]; and gauged D = 7, N = 4 SO(5) supergravity [21, 26] arising from D = 11 supergravity on S 4 [27]whose black hole solutions are given in section 4.2 and in [9,28]. 1 In the absence of the black holes, these three AdS compactifications are singled out as arising from the near-horizon geometry of the extremal non-rotating M2, D3 and M5 branes [29,30,31,32]. One of our goals will be to embed these known lower-dimensional black hole solutions into ten or eleven dimensions, thus allowing a higher dimensional interpretation in terms of rotating M2, D3 and M5-branes.Since these gauged supergravity theories may be obtained by consistently truncating the massive modes of the full Kaluza-Klein theories, it follows that all solutions of the lower-dimensional theories will also be solutions of the higher-dimensional ones [33,34]. In principle, therefore, once we know the Kaluza-Klein ansatz for the massless sector, it ought to be straightforward to read off the higher dimensional solutions. It practice, however, this is a formidable task. The correct massless ansatz for the S 7 compactification took many years to finalize [35,36], and is still highly implicit, while for the S 5 and S 4 compactifications, the complete massless ansätze are still unknown. For our present purposes, it suffices to consider truncations of the gauged supergravities to include only gauge fields in the Cartan subalgebras ...

Kovtun, Son, and Starinets proposed a bound on the shear viscosity of any fluid in terms of its entropy density. We argue that this bound is always saturated for gauge theories at large 't Hooft coupling, which admit holographically dual supergravity description.

Membrane/fivebrane duality in D = 11 implies Type IIA string/Type IIA fivebrane duality in D = 10, which in turn implies Type IIA string/heterotic string duality in D = 6.To test the conjecture, we reproduce the corrections to the 3-form field equations of the D = 10 Type IIA string (a mixture of tree-level and one-loop effects) starting from the Chern-Simons corrections to the 7-form Bianchi identities of the D = 11 fivebrane (a purely tree-level effect). K3 compactification of the latter then yields the familiar gauge and Lorentz Chern-Simons corrections to 3-form Bianchi identities of the heterotic string. We note that the absence of a dilaton in the D = 11 theory allows us to fix both the gravitational constant and the fivebrane tension in terms of the membrane tension. We also comment on an apparent conflict between fundamental and solitonic heterotic strings and on the puzzle of a fivebrane origin of S-duality.

In six spacetime dimensions, the heterotic string is dual to a Type IIA string. On further toroidal compactification to four spacetime dimensions, the heterotic string acquires an SL(2, Z) S strong/weak coupling duality and an SL(2, Z) T × SL(2, Z) U target space duality acting on the dilaton/axion, complex Kahler form and the complex structure fields S, T, U respectively. Strong/weak duality in D = 6 interchanges the roles of S and T in D = 4 yielding a Type IIA string with fields T, S, U. This suggests the existence of a third string (whose six-dimensional interpretation is more obscure) that interchanges the roles of S and U. It corresponds in fact to a Type IIB string with fields U, T, S leading to a fourdimensional string/string/string triality. Since SL(2, Z) S is perturbative for the Type IIB string, this D = 4 triality implies S-duality for the heterotic string and thus fills a gap left by D = 6 duality. For all three strings the total symmetry is SL(2, Z) S × O(6, 22; Z) T U . The O(6, 22; Z) is perturbative for the heterotic string but contains the conjectured nonperturbative SL(2, Z) X , where X is the complex scalar of the D = 10 Type IIB string. Thus four-dimensional triality also provides a (post-compactification) justification for this conjecture. We interpret the N = 4 Bogomol'nyi spectrum from all three points of view. In particular we generalize the Sen-Schwarz formula for short multiplets to include intermediate multiplets also and discuss the corresponding black hole spectrum both for the N = 4 theory and for a truncated S-T -U symmetric N = 2 theory. Just as the first two strings are described by the four-dimensional elementary and dual solitonic solutions, so the third string is described by the stringy cosmic string solution. In three dimensions all three strings are related by O(8, 24; Z) transformations.

Gauge theory -gravity duality predicts that the shear viscosity of N = 4 supersymmetric SU(N c ) Yang-Mills plasma at temperature T in the limit of large N c and large 't Hooft coupling g 2 Y M N c is independent of the coupling and equals to πN 2 c T 3 /8. In this paper, we compute the leading correction to the shear viscosity in inverse powers of 't Hooft coupling using the α ′ -corrected low-energy effective action of type IIB string theory. We also find the correction to the ratio of shear viscosity to the volume entropy density (equal to 1/4π in the limit of infinite coupling). The correction to 1/4π scales as (g 2 Y M N c ) −3/2 with a positive coefficient.

We present new anti-de Sitter black hole solutions of gauged N = 8, SO(8) supergravity, which is the massless sector of the AdS 4 × S 7 vacuum of M-theory. By focusing on the U(1) 4 Cartan subgroup, we find non-extremal 1, 2, 3 and 4 charge solutions. In the extremal limit, they may preserve up to 1/2, 1/4, 1/8 and 1/8 of the supersymmetry, respectively. In the limit of vanishing SO(8) coupling constant, the solutions reduce to the familiar black holes of the M 4 × T 7 vacuum, but have very different interpretation since there are no winding states on S 7 and no U-duality. In contrast to the T 7 compactification, moreover, we find no static multi-center solutions. Also in contrast, the S 7 fields appear "already dualized" so that the 4 charges may be all electric or all magnetic rather than 2 electric and 2 magnetic. Curiously, however, the magnetic solutions preserve no supersymmetries. We conjecture that a subset of the extreme electric black holes preserving 1/2 the supersymmetry may be identified with the S 7 Kaluza-Klein spectrum, with the non-abelian SO(8) quantum numbers provided by the fermionic zero modes.

The first quantum correction to the IIA string effective action arises at the eight-derivative level and takes the schematic form (t 8 t 8 − 1 8 ǫ 10 ǫ 10 )R 4 + B 2 ∧ X 8 . This correction, however, cannot be complete by itself, as it is neither supersymmetric nor T-duality covariant. We reexamine these eight-derivative couplings and conjecture that the simple replacement R → R(Ω + ), where Ω + = Ω + 1 2 H is the connection with torsion, nearly completely captures their dependence on the B-field. The exception is in the odd-odd spin structure sector, where additional terms are needed. We present here a complete result at the level of the five-point function and a partial one for the six-point function. Further evidence for this conjecture comes from considering T-duality as well as heterotic/IIA duality beyond leading order. Finally, we discuss the eleven-dimensional lift of the modified one-loop type IIA couplings.

scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.

hi@scite.ai

334 Leonard St

Brooklyn, NY 11211

Copyright © 2024 scite LLC. All rights reserved.

Made with 💙 for researchers

Part of the Research Solutions Family.