The results indicate that oxidation of CO to CO 2 supplies electrons for reduction of CO 2 to a methyl group by steps and enzymes of the pathway for CO 2 reduction determined for other methane-producing species. However, proteomic and quantitative RT-PCR results suggest that reduction of the methyl group to methane involves novel methyltransferases and a coenzyme F 420H2:heterodisulfide oxidoreductase system that generates a proton gradient for ATP synthesis not previously described for pathways reducing CO 2 to methane. Biochemical assays support a role for the oxidoreductase, and transcriptional mapping identified an unusual operon structure encoding the oxidoreductase. The proteomic results further indicate that acetate is synthesized from the methyl group and CO by a reversal of initial steps in the pathway for conversion of acetate to methane that yields ATP by substrate level phosphorylation. The results indicate that M. acetivorans utilizes a pathway distinct from all known CO 2 reduction pathways for methane formation that reflects an adaptation to the marine environment. Finally, the pathway supports the basis for a recently proposed primitive CO-dependent energy-conservation cycle that drove and directed the early evolution of life on Earth.anaerobic ͉ Archaea ͉ carbon monoxide C arbon monoxide (CO), an atmospheric pollutant that binds tightly to hemoglobin, is held below toxic levels in part by both aerobic and anaerobic microbes (1). The microbial metabolism of CO is an important component of the global carbon cycle (1, 2), and CO is believed to have been present in the atmosphere of early Earth that fueled the evolution of primitive metabolisms (3-7). Investigations of aerobic species from the Bacteria domain have contributed important insights into microbial CO oxidation (8, 9), as have investigations of anaerobes from the Bacteria domain that conserve energy by coupling CO oxidation to H 2 evolution (10-12). Further understanding has been derived from studies of CO-using anaerobes from the Bacteria domain that conserve energy by oxidizing CO and reducing CO 2 to acetate (13,14) or reducing sulfate to sulfide (15). Far less is known for pathways of the few CO-using species in the Archaea domain that have been described. Methanothermobacter thermautotrophicus, Methanosarcina barkeri, and Methanosarcina acetivorans obtain energy for growth by converting CO to methane (16)(17)(18)(19)(20). Although methane formation from CO first was reported in 1947 (21), a comprehensive understanding of the overall pathway for any species has not been reported. It is postulated that M. barkeri oxidizes CO to H 2 , and the H 2 is reoxidized to provide electrons for reducing CO 2 to methane (16). It is postulated further that H 2 production is essential for ATP synthesis during growth on CO (16,22,23). M. acetivorans was isolated from marine sediments where giant kelp is decomposed to methane (24). The flotation bladders of kelp contain CO that is a presumed substrate for M. acetivorans in nature. M. acetivorans produ...
Highlights:-We present a review and an expanded dataset of methane clumped isotope measurements.-Methane clumped isotope values often indicate equilibrium formation temperature.-Kinetic effects during or after methane production can affect clumped isotope values.-The wide variability in clumped isotope values suggests it will be a useful tracer. AbstractThe isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding petroleum systems, atmospheric 3 greenhouse gas concentrations, the global carbon cycle, and life in extreme environments.Recent analytical developments focusing on multiply substituted isotopologues ('clumped isotopes') are opening a valuable new window into methane geochemistry.When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. In general, clumped isotope measurements indicate plausible formation temperatures for abiotic, thermogenic, and microbial methane in many geological environments, which is encouraging for the further development of this measurement as a geothermometer, and as a tracer for the source of natural gas reservoirs and emissions.We also highlight, however, instances where clumped isotope derived temperatures are higher than expected, and discuss possible factors that could distort equilibrium formation temperature signals. In microbial methane from freshwater ecosystems, in particular, clumped isotope values appear to be controlled by kinetic effects, and may ultimately be useful to study methanogen metabolism.
While it is clear that microbial consortia containing Archaea and sulfate-reducing bacteria (SRB) can mediate the anaerobic oxidation of methane (AOM), the interplay between these microorganisms remains unknown. The leading explanation of the AOM metabolism is 'reverse methanogenesis' by which a methanogenesis substrate is produced and transferred between species. Conceptually, the reversal of methanogenesis requires low H(2) concentrations for energetic favourability. We used (13)C-labelled CH(4) as a tracer to test the effects of elevated H(2) pressures on incubations of active AOM sediments from both the Eel River basin and Hydrate Ridge. In the presence of H(2), we observed a minimal reduction in the rate of CH(4) oxidation, and conclude H(2) does not play an interspecies role in AOM. Based on these results, as well as previous work, we propose a new model for substrate transfer in AOM. In this model, methyl sulfides produced by the Archaea from both CH(4) oxidation and CO(2) reduction are transferred to the SRB. Metabolically, CH(4) oxidation provides electrons for the energy-yielding reduction of CO(2) to a methyl group ('methylogenesis'). Methylogenesis is a dominantly reductive pathway utilizing most methanogenesis enzymes in their forward direction. Incubations of seep sediments demonstrate, as would be expected from this model, that methanethiol inhibits AOM and that CO can be substituted for CH(4) as the electron donor for methylogenesis.
Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg2+ and SO2−4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.