Time-of-flight secondary ion mass spectrometry (ToF−SIMS) using a (CO 2 ) 6k + gas cluster ion beam (GCIB) was used to analyze Escherichia coli mutants previously identified as having impaired plasmid transfer capability related to the spread of antibiotic resistance. The subset of mutants selected were expected to result in changes in the bacterial envelope composition through the deletion of genes encoding for FabF, DapF, and Lpp, where the surface sensitivity of ToF−SIMS can be most useful. Analysis of arrays of spotted bacteria allowed changes in the lipid composition of the bacteria to be elucidated using multivariate analysis and confirmed through imaging of individual ion signals. Significant changes in chemical composition were observed, including a surprising loss of cyclopropanated fatty acids in the fabF mutant where FabF is associated with the elongation of FA(16:1) to FA(18:1) and not cyclopropane formation. The ability of the GCIB to generate increased higher mass signals from biological samples allowed intact lipid A (m/z 1796) to be detected on the bacteria and, despite a 40 keV impact energy, depth profiled through the bacterial envelope along with other high mass ions including species at m/z 1820 and 2428, attributed to ECA CYC , that were only observed below the surface of the bacteria and were notably absent in the depth profile of the lpp mutant. The analysis provides new insights into the action of the specific pathways targeted in this study and paves the way for whole new avenues for the characterization of intact molecules within the bacterial envelope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.